
Stored procedure wrapper for Java
&

PGObserver

Jan Mussler | PGConf.EU 2012

Outline

● Introduction
● Stored procedure wrapper

– Problems before the wrapper

– How it works

– How to use it

– More features including sharding

● PGObserver

3

Zalando

tech.zalando.org

● 14 countries
● 471 Mio € revenue

1st half of 2012
● 3 warehouses
● Europe's largest

online fashion retailer

4

Zalando platform

● Modern open source
software stack

● Mostly Java
● PostgreSQL

database backend
● > 150 developers

tech.zalando.org

5

PostgreSQL setup
● ~ 20+ Servers PostgreSQL master servers
● ~ 4.000 GB of data
● Started with PostgreSQL 9.0 rc1
● Now running version 9.0 to 9.2

– cascading replication very welcome
– maintenance improvements great (drop concurrently)
– Index only scan, pg_stat_statement improvements

● Machine setup
– 8- to 48- cores, 16GB to 128GB
– SAN, no SAN with (2x2x RAID 1, 4x RAID 10) preferred

6

PostgreSQL availability

● BoneCP as Java connection pool
● All databases use streaming replication

– Service IP for switching

● Failover is manual task
– Monitored by Jave app, Web frontend

● Significant replication delays sometimes
– Fullpage writes, Nested Transactions, Slave load

7

Stored procedure experience

● Performance benefits
● Easy to change live behavior
● Makes moving to new software version easy
● Validation close to data
● Run a very simplistic transaction scope
● Cross language API layer
● More than 1000 stored procedures

– More plpgsql than SQL than plpython

Outline

● Introduction
● Stored procedure wrapper

– Problems before the wrapper

– How it works

– How to use it

– More features including sharding

● PGObserver

9

Execution of stored procedures

● Using spring's BaseStoredProcudere
– Initially a lot of work per stored procedure

– One class per stored procedure
– Write row mappers for domain object mapping

● Missing type mapper on Java side
– Spring type mapper insufficient

● Enums, array of types, nesting, and hstore missing

● JdbcTemplate or alternatives lack ease of use

10

Goals of our wrapper

● Write as little code as possible on Java side

● One location for procedures of same topic

● One call path to any stored procedure

● “Natural” feeling for using stored procedures
– Procedure call should look like Java method call

– RPC like

11

Brief example

12

Brief example

13

Brief example

Outline

● Introduction
● Stored procedure wrapper

– Problems before the wrapper

– How it works

– How to use it

– More features including sharding

● PGObserver

15

Under the hood

Service Object

Proxy Object

StoredProcedure Object

JDBC Connection

Datasource

Datasource
Provider

Invoke method()

Typemapper

StoredProcudure lookup

16

Features

● New spring compatible type mapper
– From simple types to nested domain objects

– Supports PG enum to Java enum

● Accessing sharded data supported
– Result “aggregation” across shards

– Parallel query issuing

● Advisory locking via annotation
● Set custom timeout per stored procedure

18

Type mapper

● Annotations for class and member variables
– @DatabaseType and @DatabaseField

● CamelCase to camel_case conversion
● JPA 2.0 @Column annotation supported
● Addition type conversions include:

– Nested PostgreSQL types to Java objects

– hstore to Map<String,String>

– PostgreSQL enum to Java enum (by name)

– PostgreSQL array[] to List<?>()

Outline

● Introduction
● Stored procedure wrapper

– Problems before the wrapper

– How it works

– How to use it

– More features including sharding

● PGObserver

21

Using the wrapper

● Considere Java to PostgreSQL plpgsql
● First define the Java interface

22

Using the wrapper

● Create class implementing previous interface

23

Using the wrapper

● Define DTO classes if necessary
– Input parameters

– ResultSet mapping

24

Using the wrapper

● Next create analogous PostgreSQL types

● Or use “OUT” columns

● Implement stored procedures

CREATE FUNCTION load_customer(INOUT id int,
 OUT name text,
 OUT address t_address[])
 RETURNS SETOF record AS

CREATE TYPE t_customer AS (id int,
 name text,
 address t_address[]);

25

Putting it together

● Integration test

Outline

● Introduction
● Stored procedure wrapper

– Problems before the wrapper

– How it works

– How to use it

– More features including sharding

● PGObserver

27

Running SQL queries

● @SProcCall(sql=”[...]”) may run any query
– Benefit from type mapper

– Relatively easy to use

– Although mixing SQL into Java source

@SProcCall(sql=”UPDATE t SET name = ?”
 + “ WHERE id = ? ”
 + “ RETURNING id”)
int updateName(@SProcParam String newName,
 @SProcParam int userId);

// allows you then to do:
int r = service.updateName('Jan',1001);

28

Sharding support

● Parameter annotation @ShardKey
● @ShardKey and @SProcParam may overlap

● ShardedObject interface for custom classes
● Added datasource providers for translation

@SProcCall
Customer getCustomer(@ShardKey int shardId,
 @SProcParam String cnumber)

@SProcCall
Article getArticle(@ShardKey @SProcParam ean)

29

Different datasource providers

DataSource
Provider

DataSource

ShardedObject

Key ShardKey
Strategy

DataSource

DataSource

01

11

*0

EAN

Article

MD5

[...]10EAN123

Bitmap

Java code and annotations

Spring context config

30

Search and “Merge” result set

● Use searchShards where you do not know
the shard
– will run on all shards return on first find

● Use runOnAllShards execute on all shards
– Search name like 'Na%' and return one collection

Shard 1

Shard 2
search()

search()
ResultSet

ResultSet

Wrapper

Thread 1

Thread 2

List<Result>

31

Auto partitioning

● Java method called with one large collection
– Wrapper will split collection according to key

– Execute SQL for split collection on each shard

● Default behavior if @ShardKey is a collection

Set of EANs
(13 char)

Set 1
(13 char)

Set 2
(13 char)

Shard 1

Shard 2

Shard
Strategy

32

Java bean validation

● Annotation based validation (JSR 303)

● Relying on hibernate validator
● Automatically checked inside wrapper

– Less boiler plate code

– @SProcService(validate = true)

33

Value transformers

● Global registry for type conversions
– e.g. for use with JodaTime class

– Enables transparent handling of legacy types

● Usefull for ::text to Java class conversion
– Type safe domain classes

– ::text => class EAN

34

Per stored procedure timeout

● Trouble with global statement timeout
– Long running queries and supposedly fast ones

● Added @SProcCall(timeout=x)
– X is timeout in ms

– Allows overwrite for long running jobs

– Ensures limited run time for “fast” functions
● Search functions with too few constraints

35

Concurrency with advisory locks

● Single database serves many Java instances
– Synchronization may be required

● Wrapper features one enum for different locks
– @SProcCall(advisoryLockType=LOCK1)

– Easy locking

– One enum warns developers of existing locks

36

Transaction support
● Spring's @Transactional should work

– More or less datasource dependent

– Sharded environment more complicated

● For multi shard operations wrapper provides
– Context is one procedure equals one transaction
– Immediate commit on each shard

– Commit only if all executions were successful
– Use two phase commit

● Enabled on SProcService or SProcCall level

Outline

● Introduction
● Stored procedure wrapper

– Problems before the wrapper

– How it works

– How to use it

– More features including sharding

● PGObserver

38

PGObserver

● Build to monitor PostgreSQL performance
– Stored procedures as execution unit

– Track table statistics to assist identifying causes

● Infrastructure
– One Java data gatherer

– Web frontend in using Python

– Metric data is stored in PostgreSQL

– Per service configuration of all gather intervals

39

PGObserver database view

40

PGObserver database view

IO related stats

CPU vs Sproc Load

Top 10 by callsTop 10 by runtime

41

Sequential scan in live env.

Avg. run time per call

Avg. self time per call

Total runtime per monitored 15min

42

Table I/O data excerpt

Table size

Index size

Sequential scans

43

Summary

● Stored procedures can improve performance
● Type mapper great library to reduce map code
● Wrapper makes procedure usage a lot easier
● Stored procedure and general PostgreSQL

performance monitoring is very important
● Wrapper and PGObserver available soon!

Visit us on:
 http://www.github.com/zalando
 http://tech.zalando.org

44

Thank you for listening

Jan Mussler | PGConf.EU 2012

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 18
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44

