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Zalando

tech.zalando.org

● 14 countries
● 471 Mio € revenue 

1st half of 2012
● 3 warehouses
● Europe's largest 

online fashion retailer
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Zalando platform

● Modern open source 
software stack

● Mostly Java
● PostgreSQL 

database backend
● > 150 developers

tech.zalando.org
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PostgreSQL setup
● ~ 20+ Servers PostgreSQL master servers
● ~ 4.000 GB of data
● Started with PostgreSQL 9.0 rc1
● Now running version 9.0 to 9.2

– cascading replication very welcome
– maintenance improvements great ( drop concurrently )
– Index only scan, pg_stat_statement improvements

● Machine setup
– 8- to 48- cores, 16GB to 128GB
– SAN, no SAN with ( 2x2x RAID 1, 4x RAID 10 ) preferred



  

6

PostgreSQL availability

● BoneCP as Java connection pool
● All databases use streaming replication

– Service IP for switching

● Failover is manual task
– Monitored by Jave app, Web frontend

● Significant replication delays sometimes
– Fullpage writes, Nested Transactions, Slave load
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Stored procedure experience

● Performance benefits
● Easy to change live behavior
● Makes moving to new software version easy
● Validation close to data
● Run a very simplistic transaction scope
● Cross language API layer
● More than 1000 stored procedures

– More plpgsql than SQL than plpython
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Execution of stored procedures

● Using spring's BaseStoredProcudere
– Initially a lot of work per stored procedure

– One class per stored procedure
– Write row mappers for domain object mapping

● Missing type mapper on Java side
– Spring type mapper insufficient

● Enums, array of types, nesting, and hstore missing

● JdbcTemplate or alternatives lack ease of use
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Goals of our wrapper

● Write as little code as possible on Java side

● One location for procedures of same topic

● One call path to any stored procedure

● “Natural” feeling for using stored procedures
– Procedure call should look like Java method call

– RPC like
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Brief example
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Brief example
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Brief example
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Under the hood

Service Object

Proxy Object

StoredProcedure Object

JDBC Connection

Datasource

Datasource
Provider

Invoke method()

Typemapper

StoredProcudure lookup
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Features

● New spring compatible type mapper
– From simple types to nested domain objects

– Supports PG enum to Java enum

● Accessing sharded data supported
– Result “aggregation” across shards

– Parallel query issuing

● Advisory locking via annotation
● Set custom timeout per stored procedure
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Type mapper

● Annotations for class and member variables
– @DatabaseType and @DatabaseField

● CamelCase to camel_case conversion
● JPA 2.0 @Column annotation supported
● Addition type conversions include:

– Nested PostgreSQL types to Java objects

– hstore to Map<String,String>

– PostgreSQL enum to Java enum ( by name )

– PostgreSQL array[] to List<?>()
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Using the wrapper

● Considere Java to PostgreSQL plpgsql
● First define the Java interface
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Using the wrapper

● Create class implementing previous interface
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Using the wrapper

● Define DTO classes if necessary
– Input parameters

– ResultSet mapping
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Using the wrapper

● Next create analogous PostgreSQL types 

● Or use “OUT” columns

● Implement stored procedures

CREATE FUNCTION load_customer( INOUT id int,
                             OUT name text,
                             OUT address t_address[] )
  RETURNS SETOF record AS

CREATE TYPE t_customer AS ( id int,
                        name text,
                        address t_address[] );
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Putting it together

● Integration test
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Running SQL queries

● @SProcCall(sql=”[...]”) may run any query
– Benefit from type mapper

– Relatively easy to use

– Although mixing SQL into Java source

@SProcCall(sql=”UPDATE t SET name = ?”
             + “ WHERE id = ? ”
             + “ RETURNING id”)
int updateName(@SProcParam String newName,
               @SProcParam int userId);

// allows you then to do:
int r = service.updateName('Jan',1001);
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Sharding support

● Parameter annotation @ShardKey
● @ShardKey and @SProcParam may overlap

● ShardedObject interface for custom classes
● Added datasource providers for translation

@SProcCall
Customer getCustomer(@ShardKey int shardId, 
                     @SProcParam String cnumber)

@SProcCall
Article getArticle(@ShardKey @SProcParam ean) 
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Different datasource providers

DataSource
Provider

DataSource

ShardedObject

Key ShardKey
Strategy

DataSource

DataSource

01

11

*0

EAN

Article

MD5

[...]10EAN123

Bitmap

Java code and annotations

Spring context config
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Search and “Merge” result set

● Use searchShards where you do not know 
the shard
– will run on all shards return on first find

● Use runOnAllShards execute on all shards
– Search name like 'Na%' and return one collection

Shard 1

Shard 2
search()

search()
ResultSet

ResultSet

Wrapper

Thread 1

Thread 2

List<Result>
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Auto partitioning

● Java method called with one large collection
– Wrapper will split collection according to key

– Execute SQL for split collection on each shard

● Default behavior if @ShardKey is a collection

Set of EANs
(13 char)

Set 1
(13 char)

Set 2
(13 char)

Shard 1

Shard 2

Shard
Strategy
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Java bean validation

● Annotation based validation ( JSR 303 )

● Relying on hibernate validator
● Automatically checked inside wrapper

– Less boiler plate code

– @SProcService(validate = true)
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Value transformers

● Global registry for type conversions
– e.g. for use with JodaTime class

– Enables transparent handling of legacy types

● Usefull for ::text to Java class conversion
– Type safe domain classes

– ::text => class EAN
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Per stored procedure timeout

● Trouble with global statement timeout
– Long running queries and supposedly fast ones

● Added @SProcCall(timeout=x)
– X is timeout in ms

– Allows overwrite for long running jobs

– Ensures limited run time for “fast” functions
● Search functions with too few constraints
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Concurrency with advisory locks

● Single database serves many Java instances
– Synchronization may be required

● Wrapper features one enum for different locks
– @SProcCall(advisoryLockType=LOCK1)

– Easy locking

– One enum warns developers of existing locks
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Transaction support
● Spring's @Transactional should work

– More or less datasource dependent

– Sharded environment more complicated

● For multi shard operations wrapper provides
– Context is one procedure equals one transaction
– Immediate commit on each shard

– Commit only if all executions were successful
– Use two phase commit

● Enabled on SProcService or SProcCall level
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PGObserver

● Build to monitor PostgreSQL performance
– Stored procedures as execution unit

– Track table statistics to assist identifying causes

● Infrastructure
– One Java data gatherer

– Web frontend in using Python

– Metric data is stored in PostgreSQL

– Per service configuration of all gather intervals
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PGObserver database view
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PGObserver database view

IO related stats

CPU vs Sproc Load

Top 10 by callsTop 10 by runtime
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Sequential scan in live env.

Avg. run time per call

Avg. self time per call

Total runtime per monitored 15min
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Table I/O data excerpt

Table size

Index size 

Sequential scans
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Summary

● Stored procedures can improve performance
● Type mapper great library to reduce map code
● Wrapper makes procedure usage a lot easier
● Stored procedure and general PostgreSQL 

performance monitoring is very important
● Wrapper and PGObserver available soon!

Visit us on:
 http://www.github.com/zalando
 http://tech.zalando.org
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Thank you for listening

Jan Mussler | PGConf.EU 2012
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