
Page Costs & the Buffer Cache
Robert Haas

where did you come from?

Everything Is On Disk

● With minor exceptions, PostgreSQL plans
your query as if everything is on disk.

● Exception 1: effective_cache_size accounts
for the possibility that the same index scan
might hit the same page more than once.

● Exception 2: We disregard the cost of
accessing non-leaf btree index pages.

Everything Is In Memory

● If your whole database fits in memory, you
can model this by drastically reducing
seq_page_cost and random_page_cost.

● Default values 4.0 and 1.0, maybe use 0.1 or
0.05 for both.

● You could also raise the cpu_cost
parameters, which would be the same thing
but more confusing.

Some Things Are In Memory

● You're hosed.

● Your best option is to fool around and come
up with some blended value for
random_page_cost and seq_page_cost that
seems to produce good plans. (2.0/1.0 ; 0.5/
0.3 ; others?)

● But this is really oversimplified.

Solution Sketch

● Part 1: Use statistics to estimate what portion
of the table is likely to be in memory.
– Hard, lots of ways to do it – and all of them have

significant flaws.

● Part 2: Modify the formulas that use
seq_page_cost and random_page_cost to
take into account the chances of hitting a
cached page.
– Not trivial, but there aren't many places to

change (mostly costsize.c) or as many possible
approaches.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5

