New Free Space Map and
Visibility Map

Heikki Linnakangas

. EnterprisepB"
S




Part 1. Free Space Map

* Free Space Map stores information about free
space in a relation

* Used by INSERTs and UPDATES

, EnterprisepB"
S




Pre-8.4 Free Space Map

« Used a shared memory block
— Size was fixed at startup

 max_fsm_pages, max_fsm_relations

e Saved to global/pg_fsm.cache at shutdown
— Lost on crash or PITR

* Protected by a single lock (FreeSpacelLock)

EnterprisepB"
S




New Free Space Map

« Completely rewritten

e Stored on-disk in normal 8k pages
— Cached in shared_buffers
— Goodbye max_fsm_pages and max_fsm_relations

$ 11 data/base/11562/56553*

—rWm—————— 1 hlinnaka hlinnaka 3219456 2009-02-08 00:45 56553
—ITWe—————— 1 hlinnaka hlinnaka 24576 2009-02-08 00:45 56553 fsm
—TWe—————— 1 hlinnaka hlinnaka 8192 2009-02-08 00:45 56553 vm

. EnterprisepB"
S




FSM page structure

* Binary tree

; EnterprisepB"
D ———




FSM page structure

e Search for a page with 5 units of free space
— Start from the bottom, at the green node
— Climb up until we hit a node >=5
— Climb down, following the path with >=5

0108234567154000

: EnterprisepB"
S




FSM page structure

* Auto-repairing
— Upper levels can be reconstructed from bottom
— No pointers

0108234567154000

, EnterprisepB"
S




FSM high-level structure

 Tree of three levels

N
A

FSM

Heap O- 4000- 8000- 12000-
pages 4000 8000 12000 16000
. EnterprisepB"




FSM operations

e Search

— Can prefer pages close to given page
« Update

— Allows retall updates

. EnterprisepB"
S




Part 2: Visibility Map

* A bitmap of heap pages

* 1 means “all tuples on page are visible to all
transactions”

* Bits are set in VACUUM
e Cleared at INSERT/UPDATE/DELETE

" EnterprisepB"




Partial VACUUM

« VACUUM can now skip pages that are already
marked in visibility map

» Still needs to scan all indexes

u EnterprisepB"
S




Partial VACUUM Example

postgres=# CREATE TABLE foo (id int4);
CREATE TABLE

postgres=# INSERT INTO foo SELECT
generate series(1,100000);

INSERT 0 100000

postgres=# DELETE FROM foo WHERE id <
50000;

DELETE 49999

” EnterprisepB"
S




Partial VACUUM Example (cont)

postgres=# VACUUM VERBOSE foo;
INFO: vacuuming "public.foo"
INFO: "foo": removed 49999 row versions in 197 pages

INFO: "foo": found 49999 removable, 50001 nonremovable
row versions in 393 out of 393 pages

DETAIL: 0 dead row versions cannot be removed yet.
There were 0 unused item pointers.

0 pages are entirely empty.

CPU 0.00s/0.05u sec elapsed 0.05 sec.

VACUUM

5 EnterprisepB"




Partial VACUUM Example (cont)

postgres=# VACUUM VERBOSE foo;

INFO: vacuuming "public.foo"

INFO: "foo": found 0 removable, 8141 nonremovable row
versions in 228 out of 393 pages

DETAIL: O dead row versions cannot be removed yet.
There were 49999 unused item pointers.

0 pages are entirely empty.

CPU 0.00s/0.00u sec elapsed 0.00 sec.

VACUUM

y EnterprisepB"




Partial VACUUM Example (cont)

postgres=# VACUUM VERBOSE foo;
INFO: vacuuming "public.foo"

INFO: "foo": found 0 removable, 0 nonremovable row
versions in 31 out of 393 pages

DETAIL: O dead row versions cannot be removed yet.
There were 7905 unused item pointers.

0 pages are entirely empty.

CPU 0.00s/0.00u sec elapsed 0.00 sec.

VACUUM

5 EnterprisepB"




Partial VACUUM and Freezing

« A partial VACUUM can't advance relfrozenxid

* Whole-table scanning VACUUMs are still
needed to avoid transaction ID wraparound

* New configuration variable:
vacuum_freeze table age

” EnterprisepB"




Configuring Freezing

autovacuum_freeze _max_age = 200 M (200 M)

e vacuum_freeze min_age = 50M (100 M)
 vacuum_freeze table age =150 M
relfrozenxid

vacuum_freeze _min_age autovacuum_freeze _max_age

vacuum_freeze table age

17

EnterprisepB"




Questions?

« Future Works
— Partial freezing
— Index-only scans

 Let me know how it works

" EnterprisepB"
S




	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

