
Postgres at Urban Airship by Adam Lowry - Postgres Open, 2011-09-16

Postgres at
Urban Airship
Adventures in data stores at a
growing startup

Hello
My name is Adam Lowry; I’m a co-founder and developer at Urban
Airship in Portland, Oregon. Today I’m going to talk about our
adventures with databases as our startup grew from four guys hacking as
fast as they can and hustling for every customer.

Postgres at Urban Airship by Adam Lowry - Postgres Open, 2011-09-16

A Growing Startup

We power the world’s most successful mobile apps.
The Urban Airship platform is the engagement and monetization engine behind

thousands of the world’s most successful mobile apps.

Urban Airship is a mobile services platform, providing tools for
engagement and monetization for mobile application developers.
We have web services and libraries to do push notifications -- short
messages delivered over the data network on behalf of an application --
and content-delivery for in-app purchases.

Postgres at Urban Airship by Adam Lowry - Postgres Open, 2011-09-16

How did it all start?

• May 2009: Steven Osborn, Michael Richardson, Scott
Kveton, and myself start Urban Airship

• June 2009: iOS 3.0 released; our system powered push
notifications for the first app in the store using push: Tap
Tap Revenge 2

• “Can we do this in 3 days?” “Yes.” “We have N million
active users.” “Y- um. Yes.”

The four of us started in May of 2009
Steven and Scott had left our previous employer, but Michael and I waited
it out
Steven had been doing some part time server work with an indie iOS
game studio. When the iOS 3.0 developer betas were released he looked
at the In-App Purchase guide and said, I don’t want to do this -- wait,
other people won’t want to do this either.
- First real customer, Tapulous. “Can we do this in 3 days?” “Yes.” “We
have X million active users.” “Y- um. Yes.”

Postgres at Urban Airship by Adam Lowry - Postgres Open, 2011-09-16

Staying ahead of the avalanche

• August 2009: Sent over one million production notifications
• August 2011: Sent over five billion production notifications
• Tracking over 300 million installations

We were clearly in the right place at the right time.A little while ago we
passed the 5 billion marker, which was pretty exciting for us. We’ve also
released several products -- rich push, which I’ll mention later,
subscriptions, and we expanded our push service to Android and
BlackBerry
5 billion is a great, round number, but sending notifications alone
doesn’t require much in the way of data storage -- what matters is the
number of installations. Each of those 300 million installations is a
potential recipient, and we need to have metadata on that recipient
indexed and ready to decide whether a particular API call results in a
message to them.
To clarify, this doesn’t mean 300 million devices, but installations of an
app using us on a device.
The result is a large working set with few hot points, and pretty write
heavy

Postgres at Urban Airship by Adam Lowry - Postgres Open, 2011-09-16

My goal today is to talk about our path, and hopefully someone can learn
a little from our mistakes, or at least have a little bit of an laugh.

Postgres at Urban Airship by Adam Lowry - Postgres Open, 2011-09-16

Original Architecture

• All EC2
• Python / Django application servers
• Single PostgreSQL 8.3 instance
• pg_dump backups sent to S3, and WAL shipping for warm

standby

We started out with the simplest thing we could build to provide the
service. A single layer of Apache/mod_wsgi python servers, with a single
DB server.
To start, no ops team. Later, no DBAs; only a dev + ops working together
For reliability we did the standard warm standby with log shipping. It was
my third time setting this up, and it was a pain every time. I never got
comfortable with my scripts, but the shipping itself did save us on
multiple EC2-caused instances.

Postgres at Urban Airship by Adam Lowry - Postgres Open, 2011-09-16

Device tokens

B4860531CD04E9D294CA0E8F209179CB006B79235C7C1CCD110B364A0658BEBF

• 32 Bytes
• Same for multiple apps on the same device, but different

metadata
• Application ID, token, active?, created, alias, tags

To provide a frame of reference for what we were working with, here’s a
device token.
A device token is the unique identifier for Apple’s push notification
system. It’s 32 Bytes, and on an installation of iOS it’s the same for
different apps.
For us we stored in a row with the application ID, whether it’s active or
not (that is, can we send to it without violating Apple’s rules?), and
various other bits of metadata like alias, created timestamp, and a many-
to-many relationship for any tags applied to the DT by the application.

Postgres at Urban Airship by Adam Lowry - Postgres Open, 2011-09-16

A little naive

• Data model: surrogate keys led to extra joins, inefficient
indexes

• EC2 woes: very hard to get decent performance in EC2;
especially with EBS volumes

• Registration API: Even device tokens that would never
receive a push caused regular writes

• Preparing for Rich Push

Our initial setup was working, but it was starting to creak.
Data model
EC2/EBS
 - ec2 I/O throughput was just terrible, and EBS was worse. We ended up
with 4 EBS volumes RAIDed, and still we were barely keeping up.
Come back to EC2 issues later

When we were designing our Rich Push system the scaling troubles for
our Push system had me nervous.
-- describe rich push --
How was I going to take the same level of service, but store every single
message? A single API call could result in 10 million writes!

Postgres at Urban Airship by Adam Lowry - Postgres Open, 2011-09-16

Enter Mongo

• Preparing for Rich Push —

I was totally scared.
• See Michael Schurter’s talk,

Scaling with MongoDB

http://bit.ly/schmongodb

In late 2009/early 2010 we started work on a new product, now called
Rich Push. The idea was to complement push notifications, which are
fire-and-forget and can be lost if the user doesn’t see them before
another comes, with a persistent inbox for every user of an app.
The amount of writes necessary frightened me; a single API call could
result in 5 million writes.
At the same time we wanted to add more write-heavy features to the
primary push notification system, but I didn’t think our current
PostgreSQL installation was going to handle it at our growth rate. So we
went looking for alternatives.

http://bit.ly/schmongodb
http://bit.ly/schmongodb

Postgres at Urban Airship by Adam Lowry - Postgres Open, 2011-09-16

Mongo: the Good

• Crazy-easy setup and administration, including replication
• Flexible querying
• Fast in-place updates*
• Auto-sharding coming for future expansion

Mongo is a document based store. You have a collection, which is like a
table, and a document, which is like a row. The storage format is BSON,
which is a binary format similar in structure to JSON, but with more data
types. It uses memory-mapped files
Setup for both developers and ops is easy, asynchronous replication
setup very easy
Flexible querying
Fast in place updates with an asterisk
We were working on mongo 1.2 + 1.4 primarily; auto-sharding came in
1.6 but never worked reliably for us. Mongo 2.0 just released recently.

Postgres at Urban Airship by Adam Lowry - Postgres Open, 2011-09-16

Mongo: the Bad

• No durability (until journal added in 1.8)
• No guarantee data was written at all unless safe=True
• Databases and collections are created on demand

Memory mapped files only get written when one of two things happen:
you call fsync or the kernel decides to write them. That means that if a
server goes down you cannot trust its data at all, and you have to
promote a slave. You also have to re-sync the former master and now
slave fresh.
Drivers have a safe flag (off by default in the versions we used); if not
specified the driver won’t wait for a successful ack, can lose errors
Databases + collections can be created by saving a document; a typo can
result in misplaced data.
Still, we knew about all of this from testing and research. We were
prepared for all of these tradeoffs. Our initial uses were so promising
that we moved our primary device token data to Mongo. There was more
to learn, though.

Postgres at Urban Airship by Adam Lowry - Postgres Open, 2011-09-16

Mongo: the Ugly

• Locking: global read/write lock
• Double updating
• Indexes are very inefficient in size
• Data files get fragmented, but no online compaction —

“Flip/Flop for the Win”

This might make some people cringe. Mongo has a single global read/
write lock for the entire server. The effect this has is that if a write ever
takes a non-trivial amount of time—page fault combined with slow disk,
perhaps—everything backs up. We had high lock % when disk %util was
only ~30-40%
Double updating - if an update makes a document bigger than its current
size it will be moved. In a multi-update that could move every document
once. Customer scenario -- duplicate processing
Flip/flop oh my god.

Postgres at Urban Airship by Adam Lowry - Postgres Open, 2011-09-16

Cassandra!

• Dynamo-inspired key/value store; values have multiple
columns

• Each row lives on multiple nodes, determined by RF
• Highly available with node failure, configurable consistency

+ redundancy

Got that familiar pain again. Time for a new magic bullet?

What’s next? At this time we had the new product and the main device
token store on Mongo, but we were feeling the pain. New product comes
along; with our growth we have to expect even faster growth. We need
Scalability.
Cassandra came out of Facebook, but now developed as an Apache
project.

Postgres at Urban Airship by Adam Lowry - Postgres Open, 2011-09-16

Cassandra: the good

• When a single node went totally down there was no
disruption

• Adding new nodes is straightforward
• Active community, commercial support

If a node goes down, no problem
Adding a new one is straightforward, although rebalancing the ring can
be extremely expensive
Riptano

Postgres at Urban Airship by Adam Lowry - Postgres Open, 2011-09-16

Cassandra: the Bad

• Byzantine data model
• Manual indexing
• Counters

Postgres at Urban Airship by Adam Lowry - Postgres Open, 2011-09-16

Cassandra: the Ugly

• Extremely young project
• API changes
• Buggy drivers

• Partial failures hard to route around
• Cascading failures
• Thrift

Partial failures - when EBS fails it just gets reaaally slow
Cascading failures - hinted handoff resulted in waves of stop-the-world
garbage collections throughout the ring

Postgres at Urban Airship by Adam Lowry - Postgres Open, 2011-09-16

Cassandra: the Ugly

Six months to fix a critical lock issue in Ubuntu’s version of the Xen-
ready kernel.

Postgres at Urban Airship by Adam Lowry - Postgres Open, 2011-09-16

HBase?

Postgres at Urban Airship by Adam Lowry - Postgres Open, 2011-09-16

HBase?

Postgres at Urban Airship by Adam Lowry - Postgres Open, 2011-09-16

Revisiting our data

• Back to what we trusted, but taking all the knowledge
we’ve gained.

• Plus, PostgreSQL 9.0!

After all of these paths it was time to revisit our original large dataset.
 - we wanted it out of Mongo
 - Couldn’t really trust Cassandra, despite our admiration for it
 - Back to what we trust — Postgres.

Postgres at Urban Airship by Adam Lowry - Postgres Open, 2011-09-16

Data model/app layer changes

• BYTEAs to store the device tokens themselves
• Composite primary and foreign keys to reduce indexes
• Partial indexes to reduce size
• Custom application types for device tokens
• Manual sharding on application

Postgres at Urban Airship by Adam Lowry - Postgres Open, 2011-09-16

SQLAlchemy / Django

• Wrote shared data acces layer using SQLAlchemy instead
of Django

class HexBYTEA(sa.types.TypeDecorator):
 """Wrapper for byte arrays that hexify on load and dehexify on store."""

 impl = postgresql.BYTEA

 def process_bind_param(self, value, dialect):
 """Turn a hex string into bytes in before storing it in the DB."""
 return value.decode('hex')

 def process_result_value(self, value, dialect):
 """Return a hexified string to Python.

 We upper-case here to maintain our device token standards; if this gets
 used for PINs we have been keeping those as lower-case, so this might
 need tweaking.

 """
 if value is not None:
 return value.encode('hex').upper()
 else:
 return None

I love SQLAlchemy. Reasons we used it instead of Django’s layer for this
portion:
* connection pooling (pgbouncer is great, but no reason not to keep
sockets open locally)
* composite keys (one of the few things you just can’t do in Django)

Postgres at Urban Airship by Adam Lowry - Postgres Open, 2011-09-16

Partial Indexes

CREATE INDEX device_tokens_alias
 ON device_tokens (app, alias) WHERE alias IS NOT NULL

Postgres at Urban Airship by Adam Lowry - Postgres Open, 2011-09-16

Triggers for counters
CREATE OR REPLACE FUNCTION update_dt_stats_for_insert() RETURNS trigger AS $$
DECLARE
 counter integer;
BEGIN
 UPDATE device_token_stats
 SET
 device_tokens = device_tokens + 1,
 active_device_tokens = active_device_tokens + 1
 WHERE app = NEW.app;
 GET DIAGNOSTICS counter = ROW_COUNT;
 IF counter = 0 THEN
 INSERT INTO device_token_stats (app, device_tokens,
active_device_tokens) values (NEW.app, 1, 1);
 END IF;
 RETURN NEW;
END;
$$ LANGUAGE plpgsql;

CREATE TRIGGER update_dt_stats_for_insert
 AFTER INSERT ON device_tokens
 FOR EACH ROW
 WHEN (NEW.active = 't')
 EXECUTE PROCEDURE update_dt_stats_for_insert();

Postgres at Urban Airship by Adam Lowry - Postgres Open, 2011-09-16

Streaming queries

dts = session.execute(
 sa.select(
 fields,
 sa.and_(*filters)
).execution_options(stream_results=True)
)

Postgres at Urban Airship by Adam Lowry - Postgres Open, 2011-09-16

Insert/ignore

CREATE OR REPLACE FUNCTION insert_ignore_tag(app VARCHAR, tag VARCHAR)
RETURNS BOOL AS
 $$
 BEGIN
 BEGIN
 INSERT INTO tags (app, tag) VALUES (app, tag);
 return true;
 EXCEPTION WHEN unique_violation THEN
 -- ignore dupes
 return false;
 END;
 END;
 $$
 LANGUAGE plpgsql;

Since the vast majority of activity is API-based, we have people doing
very weird things that are legal but strange. An example: sending two
device token registration requests at the same time with two different
values.
Need to handle all sorts of concurrency errors, so all three main types we
work with have insert/ignore sections.

Postgres at Urban Airship by Adam Lowry - Postgres Open, 2011-09-16

Replication

• 9.0’s streaming replication, hot standby
• Strange issues with open transactions causing replay to

stop

Postgres at Urban Airship by Adam Lowry - Postgres Open, 2011-09-16

Results?

• 120 GB of MongoDB data became 70 GB in PostgreSQL
(now much larger)

• Transition took a very long time
• Performance still not good enough!

Postgres at Urban Airship by Adam Lowry - Postgres Open, 2011-09-16

Digression: EC2

• EC2 hates your databases.
• http://bit.ly/gavin-cloud
• EBS and Ephemeral disks go over the network; network

activity competes with disk.
• Use ephemeral drives, stick with XL instances (15 GB

RAM, 4 disks to be RAIDed)

Postgres at Urban Airship by Adam Lowry - Postgres Open, 2011-09-16

The Magic Bullet

What is the final magic bullet? Real hardware. I know, I know --
staggering for all of you. But even with aggressive distribution you’re still
hurting every time you hit the disk in EC2.
We moved to a hybrid approach with the majority of our system in a
datacenter next to AWS, still have several systems in EC2.
I miss EC2’s ease of use.

Postgres at Urban Airship by Adam Lowry - Postgres Open, 2011-09-16

The Future

• Still need reliable, scalable data storage
• Current PostgreSQL setup is buying us some time;

but too many manual pieces

We need more automation; we need more automatic failover, and
automatic distribution. Moving apps between shards is failure prone and
time consuming.

Postgres at Urban Airship by Adam Lowry - Postgres Open, 2011-09-16

The Future

PostgreSQL is still my weapon of choice —

it doesn’t keep us up at night.

Whatever we come up with will be based on PostgreSQL; it doesn’t keep
wake up my team.
Having to worry about the database distracts me from doing what I love
the most about my job; I get to help other developers build their
products.

Postgres at Urban Airship by Adam Lowry - Postgres Open, 2011-09-16

Thanks!

• adam@therobots.org / adam@urbanairship.com
• http://twitter.com/robotadam
• http://urbanairship.com
• http://urbanairship.com/jobs

http://urbanairship.com/jobs
http://urbanairship.com/jobs

