
© 2019 Percona1

Fernando Laudares Camargos

PostgreSQL and Hugepages:
Working with an abundance of memory in
modern servers

fernando.laudares@percona.com
Engenheiro de suporte

José Zechel
zechel@gmail.com
DBA PostgreSQL

mailto:zechel@gmail.com

© 2019 Percona2

Content

1. Motivation
2. How memory works
3. Working with larger pages
4. Large pages in practice
5. Testing
6. What I have learnt

© 2019 Percona3

Motivation
Understanding huge pages and how they affect databases

© 2019 Percona4

TokuDB, MongoDB and THP

2014-07-17 19:02:55 13865 [ERROR] TokuDB will not run with transparent huge pages enabled.
2014-07-17 19:02:55 13865 [ERROR] Please disable them to continue.
2014-07-17 19:02:55 13865 [ERROR] (echo never > /sys/kernel/mm/transparent_hugepage/enabled)

Disable Transparent Huge Pages (THP)

Transparent Huge Pages (THP) is a Linux memory management system that reduces the overhead of
Translation Lookaside Buffer (TLB) lookups on machines with large amounts of memory by using larger
memory pages.

However, database workloads often perform poorly with THP, because they tend to have sparse rather than
contiguous memory access patterns. You should disable THP on Linux machines to ensure best performance
with MongoDB.

Source: https://docs.mongodb.com/manual/tutorial/transparent-huge-pages/

© 2019 Percona5

TokuDB, MongoDB and THP

2014-07-17 19:02:55 13865 [ERROR] TokuDB will not run with transparent huge pages enabled.
2014-07-17 19:02:55 13865 [ERROR] Please disable them to continue.
2014-07-17 19:02:55 13865 [ERROR] (echo never > /sys/kernel/mm/transparent_hugepage/enabled)

Disable Transparent Huge Pages (THP)

Transparent Huge Pages (THP) is a Linux memory management system that reduces the overhead of
Translation Lookaside Buffer (TLB) lookups on machines with large amounts of memory by using larger
memory pages.

However, database workloads often perform poorly with THP, because they tend to have sparse rather than
contiguous memory access patterns. You should disable THP on Linux machines to ensure best performance
with MongoDB.

Source: https://docs.mongodb.com/manual/tutorial/transparent-huge-pages/

© 2019 Percona6

MySQL & PostgreSQL - database cache

● MySQL: InnoDB's Buffer Pool

innodb_buffer_pool_size

The buffer pool is an area in main memory where caches table and index
data as it is accessed. The buffer pool permits frequently used data to be
processed directly from memory, which speeds up processing. On
dedicated servers, up to 80% of physical memory is often assigned to the
buffer pool. -- Source: https://dev.mysql.com/doc/refman/5.7/en/innodb-buffer-pool.html

© 2019 Percona7

MySQL & PostgreSQL - database cache

● PostgreSQL: shared memory buffers

If you have a dedicated database server with 1GB or more of RAM, a
reasonable starting value for shared_buffers is 25% of the memory in your
system. There are some workloads where even larger settings for
shared_buffers are effective, but because PostgreSQL also relies on the
operating system cache, it is unlikely that an allocation of more than 40% of
RAM to shared_buffers will work better than a smaller amount.

-- Source: https://www.postgresql.org/docs/10/runtime-config-resource.html

© 2019 Percona8

MySQL & PostgreSQL - database cache

● PostgreSQL: shared memory buffers

If you have a dedicated database server with 1GB or more of RAM, a
reasonable starting value for shared_buffers is 25% of the memory in your
system. There are some workloads where even larger settings for
shared_buffers are effective, but because PostgreSQL also relies on the
operating system cache, it is unlikely that an allocation of more than 40% of
RAM to shared_buffers will work better than a smaller amount.

-- Source: https://www.postgresql.org/docs/10/runtime-config-resource.html

shared_buffers

© 2019 Percona9

MySQL & PostgreSQL - database cache

● PostgreSQL: shared memory buffers

shared_buffers

shared_buffers

shared_buffers

Does the dataset fit in memory?

© 2019 Percona10

How memory works
A very brief overview of memory management

© 2019 Percona11

In a nutshell

1. Applications (and the OS) run
 in virtual memory

Every process is given the
impression that it is working

with large, contiguous
sections of memory

Image source: https://en.wikipedia.org/wiki/Virtual_memory

© 2019 Percona12

In a nutshell

2. Virtual memory is mapped
 into physical memory by the
 OS using a page table

Image source: http://courses.teresco.org/cs432_f02/lectures/12-memory/12-memory.html

© 2019 Percona13

In a nutshell

3. The address translation
 logic is implemented by
 the MMU

Image adapted from https://en.wikipedia.org/wiki/Memory_management_unit

© 2019 Percona14

In a nutshell

4. The MMU employs a
 cache of recently used
 pages known as TLB

Image adapted from https://en.wikipedia.org/wiki/Memory_management_unit

Translation Lookaside Buffer

© 2019 Percona15

In a nutshell

5. The TLB is searched first:

Image source: https://en.wikipedia.org/wiki/Page_table

● if a match is found the
physical address of the page
is returned → TLB hit

● else scan the page table (walk)
looking for the address mapping
(entry) → TLB miss

1 memory access

"2" memory accesses

© 2019 Percona16

Constraint

TLB can only cache a few hundred entries

A. Increase TLB size → expensive

B. Increase page size → less pages to map

Inspiration: https://alexandrnikitin.github.io/blog/transparent-hugepages-measuring-the-performance-impact/

How can we improve its efficiency (decrease misses?)

© 2019 Percona17

Page sizes & TLB

● Typical page size is 4K

● Many modern processors support other page sizes

If we consider a server
with 256G of RAM:

4K 67108864

2M 131072

1G 256
large/huge pa

ges

© 2019 Percona18

Working with larger pages
Employing huge pages in PostgreSQL

© 2019 Percona19

Why?

The main premise is:

Less page table lookups, more "performance"

© 2019 Percona20

How?

Two ways:

1. Application has native support for working with huge pages
 Ex: JVM, MySQL, PostgreSQL

© 2019 Percona21

PostgreSQL

"Using huge pages reduces overhead when using
large contiguous chunks of memory, as

PostgreSQL does, particularly when using large
values of shared_buffers."

Source: https://www.postgresql.org/docs/9.4/kernel-resources.html#LINUX-HUGE-PAGES

© 2019 Percona22

How?

The other way is:

2. "Blindly"

● Application does not have support for huge pages…
… but the underlying OS (Linux) does:

Transparent Huge Pages

© 2019 Percona23

THP

The kernel works in the background (khugepaged) trying to:

● "create" huge pages
○ find enough contiguous blocks of memory
○ "convert" them into a huge page

● transparently allocate them to processes when there is a "fit"
○ shouldn't provide a 2M-page for someone asking 128K

© 2019 Percona24

THP 4K

"large" page

© 2019 Percona25

THP

© 2019 Percona26

THP

© 2019 Percona27

THP

© 2019 Percona28

THP

© 2019 Percona29

THP

khugepaged work is somewhat expensive and may cause stalls

● known to cause latency spikes in certain situations
○ pages are locked during their manipulation

© 2019 Percona30

Huge pages in practice
How to do it

© 2019 Percona31

Architecture support for huge pages

cat /proc/cpuinfo
processor : 0
vendor_id : GenuineIntel
cpu family : 6
model : 63
model name : Intel(R) Xeon(R) CPU E5-2683 v3 @ 2.00GHz
(...)
flags : fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat
pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm
constant_tsc arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc aperfmperf
eagerfpu pni pclmulqdq dtes64 ds_cpl vmx smx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid
dca sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand
lahf_lm abm epb tpr_shadow vnmi flexpriority ept vpid fsgsbase tsc_adjust bmi1 avx2
smep bmi2 erms invpcid cqm xsaveopt cqm_llc cqm_occup_llc dtherm ida arat pln pts

© 2019 Percona32

Architecture support for huge pages

cat /proc/cpuinfo
processor : 0
vendor_id : GenuineIntel
cpu family : 6
model : 63
model name : Intel(R) Xeon(R) CPU E5-2683 v3 @ 2.00GHz
(...)
flags : fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat
pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm
constant_tsc arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc aperfmperf
eagerfpu pni pclmulqdq dtes64 ds_cpl vmx smx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid
dca sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand
lahf_lm abm epb tpr_shadow vnmi flexpriority ept vpid fsgsbase tsc_adjust bmi1 avx2
smep bmi2 erms invpcid cqm xsaveopt cqm_llc cqm_occup_llc dtherm ida arat pln pts

 1G
2M

© 2019 Percona33

Architecture support for huge pages

cat /proc/meminfo
MemTotal: 264041660 kB
(...)
Hugepagesize: 2048 kB
DirectMap4k: 128116 kB
DirectMap2M: 3956736 kB
DirectMap1G: 266338304 kB

© 2019 Percona34

Changing huge page size

vi /etc/default/grub

update-grub

GRUB_CMDLINE_LINUX_DEFAULT="hugepagesz=1GB default_hugepagesz=1G"

1)

2)

3) # shutdown -r now

Generating grub configuration file ...
Found linux image: /boot/vmlinuz-4.4.0-75-generic
Found initrd image: /boot/initrd.img-4.4.0-75-generic
Found memtest86+ image: /memtest86+.elf
Found memtest86+ image: /memtest86+.bin
done

© 2019 Percona35

Creating a "pool" of huge pages

sysctl -w vm.nr_hugepages=10

cat /proc/meminfo | grep Huge
AnonHugePages: 2048 kB
HugePages_Total: 10
HugePages_Free: 10
HugePages_Rsvd: 0
HugePages_Surp: 0
Hugepagesize: 1048576 kB

free -m
 total used free shared buff/cache available
Mem: 257853 776 256938 9 137 256319
...
Mem: 257853 11007 246705 9 140 246087

11007M - 776M = 9.99G

© 2019 Percona36

Creating a "pool" of huge pages - NUMA

numastat -cm | egrep 'Node|Huge'
 Node 0 Node 1 Total
AnonHugePages 2 0 2
HugePages_Total 5120 5120 10240
HugePages_Free 5120 5120 10240
HugePages_Surp 0 0 0

© 2019 Percona37

Creating a "pool" of huge pages - in a single node

sysctl -w vm.nr_hugepages=0

numastat -cm | egrep 'Node|Huge'
 Node 0 Node 1 Total
AnonHugePages 2 0 2
HugePages_Total 10240 0 10240
HugePages_Free 10240 0 10240
HugePages_Surp 0 0 0

echo 10 > /sys/devices/system/node/node0/hugepages/hugepages-1048576kB/nr_hugepages

© 2019 Percona38

"Online" huge page allocation

sysctl -w vm.nr_hugepages=256
vm.nr_hugepages = 256

cat /proc/meminfo | grep Huge
AnonHugePages: 2048 kB
HugePages_Total: 246
HugePages_Free: 246
HugePages_Rsvd: 0
HugePages_Surp: 0
Hugepagesize: 1048576 kB

It might not work!

© 2019 Percona39

Allocating huge pages at boot time

GRUB_CMDLINE_LINUX_DEFAULT="hugepagesz=1GB default_hugepagesz=1G
 hugepages=100"

© 2019 Percona40

Disabling THP

echo never > /sys/kernel/mm/transparent_hugepage/enabled
echo never > /sys/kernel/mm/transparent_hugepage/defrag

GRUB_CMDLINE_LINUX_DEFAULT="(...) transparent_hugepage=never "

ps aux |grep huge
root 42 0.0 0.0 0 0 ? SN Jan17 0:00 [khugepaged]

cat /proc/meminfo | grep AnonHuge
AnonHugePages: 2048 kB

● at runtime:

● at boot time:

To disable it:

© 2019 Percona41

Configuring
database

© 2019 Percona42

Userland

getent group mysql
mysql:x:1001:

Give the user permission to use huge pages ...
1)

2) # echo 1001 > /proc/sys/vm/hugetlb_shm_group

© 2019 Percona43

Limits

… and/or give the user permission to lock (enough) memory:
cp /lib/systemd/system/mysql.service /etc/systemd/system/

vim /etc/systemd/system/mysql.service

1)

2)

3) # systemctl daemon-reload

[Service]
...
LimitMEMLOCK=infinity

© 2019 Percona44

Enabling huge pages in the database

MySQL

vim /etc/mysql/my.cnf

[mysqld]
...
large_pages=ON

PostgreSQL

vim /etc/postgresql/10/main/postgresql.conf

huge_pages=ON

service mysql restart # service postgresql restart

© 2019 Percona45

Testing
Experimenting popular database benchmarks with huge pages

© 2019 Percona46

At first

● Less interested in measuring TLB improvements
● Curious about how huge pages would affect "performance"

© 2019 Percona47

Plan

● Test with popular benchmarks with PostgreSQL
○ Sysbench-TPCC, Sysbench-OLTP, pgBench

● Consider two situations:
○ Dataset fits in memory (Buffer Pool / shared_buffers)
○ Dataset does not fit in memory

● Run each test three times:
○ With regular 4K pages as baseline, then 2M & 1G huge pages

● Run each test with different number of clients (threads):
○ 56, 112, 224, 448

© 2019 Percona48

Test server

● Intel Xeon E5-2683 v3 @ 2.00GHz
○ 2 sockets = 28 cores, 56 threads

● 256GB of RAM
● Samsung SM863 SSD, 1.92TB (EXT4)

● Ubuntu 16.04.2 LTS
○ Linux 4.4.0-75-generic #96-Ubuntu SMP

● PostgreSQL 10 (10.6-1.pgdg16.04+1)

● Sysbench 1.1.0-7df3892, Sysbench-TPCC
● pgBench (Ubuntu 10.6-1.pgdg16.04+1)

Hardware

OS

Databases

Benchmarks

© 2019 Percona49

Database configuration
P

os
tg

re
S

Q
L max_connections = 1000

maintenance_work_mem = 1GB
bgwriter_lru_maxpages = 1000
bgwriter_lru_multiplier = 10.0
bgwriter_flush_after = 0
wal_level = minimal
fsync = on
synchronous_commit = on
wal_sync_method = fsync
full_page_writes = on
wal_compression = on
checkpoint_timeout = 1
checkpoint_completion_target = 0.9
max_wal_size = 200GB
min_wal_size = 1GB
max_wal_senders = 0
random_page_cost = 1.0
effective_cache_size = 100GB
log_checkpoints = on
autovacuum_vacuum_scale_factor = 0.4
shared_buffers = XXXGB
huge_pages = X

varying

© 2019 Percona50

Double check during initialization - PostgreSQL

2019-01-17 09:46:10.138 EST [20982] FATAL: could not map anonymous shared memory: Cannot allocate memory
2019-01-17 09:46:10.138 EST [20982] HINT: This error usually means that PostgreSQL's request for a shared
memory segment exceeded available memory, swap space, or huge pages. To reduce the request size (currently
184601698304 bytes), reduce PostgreSQL's shared memory usage, perhaps by reducing shared_buffers or
max_connections.
2019-01-17 09:46:10.138 EST [20982] LOG: database system is shut down

huge_pages = on

© 2019 Percona51

Benchmarks

© 2019 Percona52

Sysbench-TPCC: PostgreSQL

● Prepare:
Sysbench tpcc.lua --db-driver=pgsql --pgsql-db=sysbench --pgsql-user=sysbench --pgsql-password=sysbench
--threads=56 --report-interval=1 --tables=10 --scale=100 --use_fk=0 --trx_level=RC prepare

● Run:
sysbench tpcc.lua --db-driver=pgsql --pgsql-host=localhost --pgsql-port=5432 --pgsql-db=sysbench
--pgsql-user=sysbench --pgsql-password=sysbench --threads=X --report-interval=1 --tables=10 --scale=100
--use_fk=0 --trx_level=RC --time=3600 run

© 2019 Percona53

Sysbench-TPCC: PostgreSQL

shared_buffers = 96G

shared_buffers = 24G

© 2019 Percona54

Sysbench OLTP point_select: PostgreSQL

● Prepare:
$ sysbench oltp_point_select.lua --db-driver=pgsql --pgsql-host=localhost --pgsql-db=sysbench
--pgsql-user=sysbench --pgsql-password=sysbench --threads=56 --report-interval=1 --tables=10
--table-size=80000000 prepare

Resulting:
sysbench=# SELECT datname, pg_size_pretty(pg_database_size(datname)), blks_read,
blks_hit, temp_files, temp_bytes from pg_stat_database where datname='sysbench';
 datname | pg_size_pretty | blks_read | blks_hit | temp_files | temp_bytes
----------+----------------+-----------+------------+------------+-------------
 sysbench | 198 GB | 37777656 | 4478661433 | 20 | 16031580160

$ vacuumdb sysbench

● Run:
$ sysbench oltp_point_select.lua --db-driver=pgsql --pgsql-host=localhost --pgsql-port=5432
--pgsql-db=sysbench --pgsql-user=sysbench --pgsql-password=sysbench --threads=X --report-interval=1
--tables=10 --table-size=80000000 --time=3600 run

© 2019 Percona55

Sysbench OLTP point selects: PostgreSQL

© 2019 Percona56

pgBench select-only: PostgreSQL

● Prepare:
$ pgbench --username=sysbench --host=localhost -i --scale=12800 sysbench

Resulting:
sysbench=# SELECT datname, pg_size_pretty(pg_database_size(datname)), blks_read,
blks_hit, temp_files, temp_bytes from pg_stat_database where datname='sysbench';
 datname | pg_size_pretty | blks_read | blks_hit | temp_files | temp_bytes
----------+----------------+-----------+----------+------------+-------------
 sysbench | 187 GB | 62983477 | 21142806 | 24 | 25650487296
(1 row)

$ pgbench --username=sysbench --host=localhost --builtin=select-only --client=X --no-vacuum --time=3600
--progress=1 sysbench

● Run:

© 2019 Percona57

pgBench select-only: PostgreSQL

© 2019 Percona58

pgBench select-only: PostgreSQL with THP enabled

© 2019 Percona59

What about efficiency ?

From Mark Callaghan's:

Efficiency vs performance - Use the
right index structure for the job

In his quest for finding:

● the best configuration of
the best index structure (for
LSM)

Considering:

● performance goals
● constraints on hardware

and efficiency

Source: http://smalldatum.blogspot.com/2019/01/optimal-configurations-for-lsm-and-more.html

https://docs.google.com/presentation/d/e/2PACX-1vSNk8RkQrVRm_BNZKYyz0sl1k7C6yjTfJIqfMDxnnka8f4pfpf6j2yuXvxvyVGnrzRERdAaxNbOU-CT/pub?start=false&loop=false&delayms=3000&slide=id.p
https://docs.google.com/presentation/d/e/2PACX-1vSNk8RkQrVRm_BNZKYyz0sl1k7C6yjTfJIqfMDxnnka8f4pfpf6j2yuXvxvyVGnrzRERdAaxNbOU-CT/pub?start=false&loop=false&delayms=3000&slide=id.p

© 2019 Percona60

Measuring efficiency directly

● Using large pages to improve the effectiveness of the TLB
○ by increasing the page size there will be less pages to map
○ should be visible at the CPU level

■ CPU shall have less work to do

© 2019 Percona61

Measuring CPU counters with Perf

Perf has built-in event aliases for counters of type
.MISS_CAUSES_A_WALK at the TLB level:

Inspiration: https://alexandrnikitin.github.io/blog/transparent-hugepages-measuring-the-performance-impact/

● Data
○ dTLB-loads
○ dTLB-load-misses
○ dTLB-stores
○ dTLB-store-misses

● Instructions
○ iTLB-load
○ iTLB-load-misses

1)

© 2019 Percona62

Measuring CPU counters with Perf

Number of CPU cycles spent in the page table walking:2)

● cycles

● cpu/event=0x08,umask=0x10,name=dcycles

● cpu/event=0x85,umask=0x10,name=icycles

© 2019 Percona63

Measuring CPU counters with Perf

Number of main memory reads caused by TLB miss:3)

● cache-misses

● cpu/event=0xbc,umask=0x18,name=dreads

● cpu/event=0xbc,umask=0x28,name=ireads

© 2019 Percona64

Measuring CPU counters with Perf

sudo perf stat -e dTLB-loads,dTLB-load-misses,dTLB-stores,dTLB-store-misses -e
iTLB-load,iTLB-load-misses -e cycles -e cpu/event=0x08,umask=0x10,name=dcycles/ -e
cpu/event=0x85,umask=0x10,name=icycles/ -e cpu/event=0xbc,umask=0x18,name=dreads/
-e cpu/event=0xbc,umask=0x18,name=dreads/ -e cpu/event=0xbc,umask=0x28,name=ireads/
-p 2525 sysbench oltp_point_select.lua --db-driver=mysql --mysql-host=localhost
--mysql-socket=/var/run/mysqld/mysqld.sock --mysql-db=sysbench
--mysql-user=sysbench --mysql-password=sysbench --threads=448 --report-interval=1
--tables=10 --table-size=80000000 --time=3600 run

mysqld

© 2019 Percona65

Measuring CPU counters with Perf

© 2019 Percona66

Measuring CPU counters with Perf

4K
1G
2M

© 2019 Percona67

pgBench select-only: PostgreSQL

© 2019 Percona68

pgBench select-only: PostgreSQL

● 4K-pages, 188G shared_buffers, 112 clients

© 2019 Percona69

pgBench select-only: PostgreSQL

© 2019 Percona70

pgBench select-only: PostgreSQL

● 4K-pages, 188G shared_buffers, 224 clients

© 2019 Percona71

pgBench select-only: PostgreSQL

© 2019 Percona72

pgBench select-only: PostgreSQL

© 2019 Percona73

pgBench select-only: PostgreSQL

Static hugepages
cannot be swapped out

© 2019 Percona74

What I have learnt
Sharing my findings

© 2019 Percona75

Parting thoughts

● It was a much bigger adventure than I anticipated

● The overall idea that databases will greatly benefit from huge pages
won't always apply

○ I should (and will) explore a broader range of benchmarks to
better understand what types of workloads most benefit from it

● MySQL support for 1G huge pages need some work
○ memory allocation during BP initialization is particular with 1G HP

● Huge pages and swapping

DATABASE PERFORMANCE
MATTERS

Database Performance MattersDatabase Performance MattersDatabase Performance MattersDatabase Performance Matters
Champions of Unbiased
Open Source Database Solutions

