
PostgreSQL in Production
Chinh Nguyen & Neeran Gul

Foundation Team, Yammer (Microsoft)

About Yammer

● Founded 2008
● Enterprise Social Network
● Acquired 2012 by Microsoft
● Typical workloads:

○ Micro services & Rails monolith
○ 90% “real-time” - web queries
○ Batch workloads runs off mostly non-production env
○ Many service-to-service dependencies
○ Large varieties of data stores

Yammer loves PostgreSQL

● Reliability and stability
● Rich feature sets (data types, extensions, replication, etc.)
● Great libraries/clients for all major languages
● Awesome community and toolings

PostgreSQL in Production

● 14 PostgreSQL clusters in Production (4-8 nodes/cluster, 2 DCs)
● Asynchronous cascading replication
● Use replica read whenever timeline consistency is accepted
● Peak ~30k RPS for masters (reads + writes) + ~25k RPS for replicas
● Runs on Fusion IOs, no SAN
● Disaster Recovery replicas for non-realtime production traffic and all

analytics workload
● Configuration management using Puppet, assisted by bouncie, an in-house

tool

PostgreSQL Traffic

● 100% E2E TLS
● AES SHA256 at rest
● 1.2 Gbps peak egress

Once Upon A Time ...

● Service Discovery was not a thing
● Diverged/customized configuration per cluster
● Dummy pgbouncer on each PostgreSQL node
● Clients aware of all nodes
● Losing track of cluster memberships
● Replication management is an art
● Astronomical MTTR
● Ganglia-backed metrics system

Clients

master

pgbouncer

replica

pgbouncer

master

pgbouncer

replica

pgbouncer

Bouncie - The PgBouncer Cluster

Postgres
replica

ZK

Postgres
master

control data

PgBouncer
Master pool

PgBouncer
Replica pool

Haproxy
TCP passthrough

clients

Master identification
Replication graph
PgBouncer reloads on change

TLSTLS

Postgres
replica

PgBouncer
Replica pool

Bouncie

Scaling, Partitioning and Sharding

● Master is SPOF for write
○ Know the limits (RPS, IO, storage)
○ Avoid synchronous whenever possible (instead write to a queue)

● Do not let a single cluster grow too big
○ IO/Storage constraint
○ Expensive maintenance
○ Slow replica rebuild

● Vertical partitioning may create more SPOFs
○ Availability , MTBF
○ Compound latency on critical path

● Keep it simple! (no crazy joins, layers of subqueries, views, etc.)
● “Sharding is hard”

The Tale of Caching

● Increasing reliance on caching layer (req hit rate > 90%)
○ ~400k RPS mcrouter/memcached at peak

● Inconsistency, invalidation problems
● mcrouter comes to rescue with

○ Memcached hardware failures
○ Cold cache, cross-DC cache replication

● Troubleshooting the cache is hard
○ Hot keys
○ Eviction
○ Sometimes involving TCP packet analysis

● Rely more on replica reads instead of cache!

Replication lag!

● pg_current_xlog_location() - pg_last_xlog_replay_location() = lag in bytes
● Lag in bytes/WAL rate time value

Keeping PostgreSQL Happy

● Set statement_timeout on client side!
○ Most clients just walk away after timeout on their end

● Consider a watchdog service to kill long running SELECT queries
○ This saved us numerous times

● Lower lock_timeout to get out of bad locking situation quickly
● Control pool_size on PgBouncers/clients
● Tune timeouts on pgbouncer

○ Server_lifetime
○ Idle_transaction_timeout

● Separate disks/partitions for data, xlog and logs

Backups & Maintenance

● PITR is a must have
○ Barman (https://github.com/2ndquadrant-it/barman)
○ Wal-E (https://github.com/wal-e/wal-e)
○ Monitor your backup system
○ Exercise recovery runbook regularly (implement continuous recovery test)

● Logging & analysis
○ Pgbadger for offline query analysis (https://github.com/dalibo/pgbadger)
○ Pg_hero (https://github.com/ankane/pghero)
○ PgBouncer log to ELK for auth error detection

● Table compaction, reindexing
○ Pgcompact (https://github.com/grayhemp/pgtoolkit#pgcompact)
○ Extremely resource-intensive and risky process

● Upgrade :)

https://github.com/2ndquadrant-it/barman
https://github.com/wal-e/wal-e
https://github.com/dalibo/pgbadger
https://github.com/ankane/pghero
https://github.com/grayhemp/pgtoolkit#pgcompact

Metrics and Dashboards

The Road to Azure

● 99.99% SLA
● Automation, automation and automation

○ Provisioning of VMs, VM rotation
○ Replica failover by moving attached disks to healthy, standby VMs
○ Master failover TBD

● Bouncie improvements
○ Removing DNS dependency
○ Real-time update
○ Graceful failover/rotation

● Hashicorp Vault integration for credentials rotation
● Celling, data locality, multi-region replicas
● Patroni has a lot of potential! (https://github.com/zalando/patroni)

https://github.com/zalando/patroni

We are Hiring!

Come join us, we have openings in both San Francisco and Redmond!

● https://medium.com/yammer-engineering
● Our stack

○ Linux
○ Mesos, Marathon, Docker, Hashicorp Vault
○ PostgreSQL, HBase, ElasticSearch
○ Azure

● Contacts: cnguyen@yammer-inc.com

https://medium.com/yammer-engineering
https://medium.com/yammer-engineering
mailto:cnguyen@yammer-inc.com

QUESTIONS?

