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About Yammer

● Founded 2008
● Enterprise Social Network
● Acquired 2012 by Microsoft
● Typical workloads:

○ Micro services & Rails monolith
○ 90% “real-time” - web queries
○ Batch workloads runs off mostly non-production env
○ Many service-to-service dependencies
○ Large varieties of data stores



Yammer loves PostgreSQL

● Reliability and stability
● Rich feature sets (data types, extensions, replication, etc.)
● Great libraries/clients for all major languages
● Awesome community and toolings



PostgreSQL in Production

● 14 PostgreSQL clusters in Production (4-8 nodes/cluster, 2 DCs)
● Asynchronous cascading replication
● Use replica read whenever timeline consistency is accepted
● Peak ~30k RPS for masters (reads + writes) + ~25k RPS for replicas
● Runs on Fusion IOs, no SAN
● Disaster Recovery replicas for non-realtime production traffic and all 

analytics workload 
● Configuration management using Puppet, assisted by bouncie, an in-house 

tool



PostgreSQL Traffic

● 100% E2E TLS
● AES SHA256 at rest
● 1.2 Gbps peak egress



Once Upon A Time ...

● Service Discovery was not a thing
● Diverged/customized configuration per cluster
● Dummy pgbouncer on each PostgreSQL node
● Clients aware of all nodes
● Losing track of cluster memberships
● Replication management is an art
● Astronomical MTTR
● Ganglia-backed metrics system
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Bouncie - The PgBouncer Cluster
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Bouncie



Scaling, Partitioning and Sharding

● Master is SPOF for write
○ Know the limits (RPS, IO, storage)
○ Avoid synchronous whenever possible (instead write to a queue)

● Do not let a single cluster grow too big
○ IO/Storage constraint
○ Expensive maintenance
○ Slow replica rebuild

● Vertical partitioning may create more SPOFs
○ Availability         , MTBF 
○ Compound latency on critical path

● Keep it simple! (no crazy joins, layers of subqueries, views, etc.)
● “Sharding is hard”



The Tale of Caching

● Increasing reliance on caching layer (req hit rate > 90%)
○ ~400k RPS mcrouter/memcached at peak

● Inconsistency, invalidation problems
● mcrouter comes to rescue with

○ Memcached hardware failures
○ Cold cache, cross-DC cache replication

● Troubleshooting the cache is hard
○ Hot keys
○ Eviction
○ Sometimes involving TCP packet analysis

● Rely more on replica reads instead of cache!



Replication lag!

● pg_current_xlog_location() - pg_last_xlog_replay_location() = lag in bytes
● Lag in bytes/WAL rate         time value



Keeping PostgreSQL Happy

● Set statement_timeout on client side!
○ Most clients just walk away after timeout on their end

● Consider a watchdog service to kill long running SELECT queries
○ This saved us numerous times

● Lower lock_timeout to get out of bad locking situation quickly
● Control pool_size on PgBouncers/clients
● Tune timeouts on pgbouncer

○ Server_lifetime
○ Idle_transaction_timeout

● Separate disks/partitions for data, xlog and logs



Backups & Maintenance

● PITR is a must have
○ Barman (https://github.com/2ndquadrant-it/barman)
○ Wal-E (https://github.com/wal-e/wal-e)
○ Monitor your backup system
○ Exercise recovery runbook regularly (implement continuous recovery test)

● Logging & analysis
○ Pgbadger for offline query analysis (https://github.com/dalibo/pgbadger)
○ Pg_hero (https://github.com/ankane/pghero)
○ PgBouncer log to ELK for auth error detection

● Table compaction, reindexing
○ Pgcompact (https://github.com/grayhemp/pgtoolkit#pgcompact)
○ Extremely resource-intensive and risky process

● Upgrade :)

https://github.com/2ndquadrant-it/barman
https://github.com/wal-e/wal-e
https://github.com/dalibo/pgbadger
https://github.com/ankane/pghero
https://github.com/grayhemp/pgtoolkit#pgcompact


Metrics and Dashboards



The Road to Azure

● 99.99% SLA
● Automation, automation and automation

○ Provisioning of VMs, VM rotation
○ Replica failover by moving attached disks to healthy, standby VMs
○ Master failover TBD

● Bouncie improvements
○ Removing DNS dependency
○ Real-time update
○ Graceful failover/rotation

● Hashicorp Vault integration for credentials rotation
● Celling, data locality, multi-region replicas
● Patroni has a lot of potential! (https://github.com/zalando/patroni)

https://github.com/zalando/patroni


We are Hiring!

Come join us, we have openings in both San Francisco and Redmond!

● https://medium.com/yammer-engineering
● Our stack

○ Linux
○ Mesos, Marathon, Docker, Hashicorp Vault
○ PostgreSQL, HBase, ElasticSearch
○ Azure

● Contacts: cnguyen@yammer-inc.com

https://medium.com/yammer-engineering
https://medium.com/yammer-engineering
mailto:cnguyen@yammer-inc.com


QUESTIONS?


