Workshop 2008

A quick overview about the main
functionality of PostgreSQL

Susanne Ebrecht

PostgreSQL Project
Dipl. Inf., Sun Microsystems

FrOSCon
August 2008

© August 2008, PostgreSQL, Author: Susanne Ebrecht

About the workshop

This workshop is a shared project from the PostgreSQL community. It
once started as shared project from the German speaking PostgreSQL
community and was originally made from Andreas Scherbaum, Andreas
Kretschmer and Susanne Ebrecht.

For FrOSCon 2008 (http://www.froscon.org) Susanne got this workshop
up to date by totally overworking and rewriting it. Additionally she added
the installation in home directory section and translated it into English
so that it is more international for a better sharing with the world wide
PostgreSQL team.

© August 2008, PostgreSQL, Author: Susanne Ebrecht

Marketing words ...

Referential Integrity

Constraints

Transactions Rules

Views
Trigger

Procedural languages

We want to show you how necessary and convenient these features are.

Basic knowledge about relational databases and SQL is good for a better
understanding, but it is not mandatory.

Our goal is to present PostgreSQL as a modern and powerful database
management system.

© August 2008, PostgreSQL, Author: Susanne Ebrecht

Examples

It is always really difficult to find good and small training examples. We
took here the example of bank account and bookings because we could
found use cases here for all features that we want to show. We tried to
keep it simple. Also we wanted to have a continuous example. Please
consider, in the real world bank databases are much more complex and
you have to think about much more security aspects.

We will install PostgreSQL at the home directory. This is because
students often don't have root access in data centres. Please consider,
in the real world you would install PostgreSQL by distribution packages
or compile it in root environment. For make a secure and productive
installation please read the installation part of the PostgreSQL online
documentation at http://www.postgresql.org.

© August 2008, PostgreSQL, Author: Susanne Ebrecht

http://www.postgresql.org/

PostgreSQL Installation

http://www.postgresql.org/ftp/source
http://www.postgresql.org/ftp/source/v8.3.3

$ tar xvzf postgresql-8.3.3.tar.gz

$ cd postgresql-8.3.3

$./configure --enable-nls --prefix=/home/username/pgsql83
$ make

$ make install

© August 2008, PostgreSQL, Author: Susanne Ebrecht

http://www.postgresql.org/ftp/source

PostgreSQL Initialisation

Attention!!
Please think about encoding first!

$ locale

[$ export LANG=<wished language>]

$ cd /home/username/pgsql83

$ mkdir data

$./bin/initdb -D /home/username/pgsql83/data

For encoding settings you can use here alternative the option:
--locale=LOCALE

or if you want to change single options you can also use:
--lc-collate, --lc-ctype, --lc-messages=LOCALE
--lc-monetary, --lc-numeric, --lc-time=LOCALE

© August 2008, PostgreSQL, Author: Susanne Ebrecht

PostgreSQL Daemon Start/Stop

$ cd /home/username/pgsql83
$./bin/postgres -D /home/username/pgsql83/data >logfile 2>&1 &

Now the server is running ...

You can use pg_ctl to start, stop, restart, reload, status and kill the daemon

$./bin/pg ctl -D /home/username/pgsql83/data stop
$./bin/pg ctl -D /home/username/pgsql83/data start

© August 2008, PostgreSQL, Author: Susanne Ebrecht

The first databases

$ cd /home/username/pgsql83
$./bin/createdb
$./bin/createdb workshop
$./bin/psql

username=# \(

$./bin/psqgl workshop
workshop=# \q

The command createdb without a given database name always tries
to create a database with same name as system user name of the
user who executed the command.

The default client of PostgreSQL is psql.

© August 2008, PostgreSQL, Author: Susanne Ebrecht

Security note

Usually, you don't install PostgreSQL in your home. If you install
PostgreSQL from a distribution package then the system will create
a user with name postgres or pgsqgl. When you compile PostgreSQL
as root then you should do the same before initialise the system.

Usually the postgres user will make the initdb. The user who make
the initdb is the superuser. Only this user is allowed to start/stop the
daemon.

You can use the command createuser as superuser for creating new
users. Consider, if you create a new superuser then this user is
allowed to do all stuff on the PostgreSQL system layer but not on file
system layer and not on OS layer. Starting/Stoping the daemon is
OS based. This always only can be done from the superuser who
made the initdb.

© August 2008, PostgreSQL, Author: Susanne Ebrecht

Referential Integrity

In the database world usually you have to deal with objects that
relates to each other. Like book and author or publisher.

At our example we want to separate the bank customer data from
the transaction data (bookings). That means we will create two
tables and it is mandatory to have a customer for every accounting
report.

This is called refrential integrity. It will guarantee that you have a
logical correctness of your data in your database.

© August 2008, PostgreSQL, Author: Susanne Ebrecht

10

Referential Integrity

account_no {) <ing_no (
text, nN bigint, nN
customer_name, account_no (FK),
text, nN ten:E nk
ZIp _code, L2, ts, tmestamp w. tz,

NN nN, default now()
direction, char(l),
ni
val, numeric(10,2),
ni

town, text, nN

Please consider, this is just an example. For a real database you would have some
more tables and you would separate the customer data from the account data.

Never use data types like Integer for numbers that could start with 0 like account
numbers, telephone numbers or zip codes. Always use a character based data type
here like char, varchar or text.

© August 2008, PostgreSQL, Author: Susanne Ebrecht

Sequence

The booking number shall start with 100000 and shall be created automatically

CREATE SEQUENCE seq booking no
START WITH 100000 INCREMENT BY 1;

© August 2008, PostgreSQL, Author: Susanne Ebrecht

12

Table account

CREATE TABLE account(
account no TEXT NOT NULL,
customer name TEXT NOT NULL,
zip code CHAR(5) NOT NULL,
town TEXT NOT NULL,

PRIMARY KEY(account no)

) ;

© August 2008, PostgreSQL, Author: Susanne Ebrecht

13

Table booking

CREATE TABLE booking(

booking no BIGINT NOT NULL DEFAULT NEXTVAL('seq booking no'),
account no TEXT NOT NULL,

ts TIMESTAMP WITH TIME ZONE NOT NULL DEFAULT NOW(),

direction CHAR(1),

val NUMERIC(10,2),

txt TEXT,

PRIMARY KEY(booking no),

FOREIGN KEY(account no) REFERENCES account(account no)

) ;

14
© August 2008, PostgreSQL, Author: Susanne Ebrecht

Indexes

Indexes are really important for searching and sorting.

CREATE UNIQUE INDEX 1 booking

ON booking(account no, ts);

CREATE INDEX 1 booking account

ON booking(account no);

CREATE INDEX 1 booking ts
ON booking(ts);

© August 2008, PostgreSQL, Author: Susanne Ebrecht

15

Data

INSERT INTO account(account no, customer name, zip code, town)

VALUES('0770700713', 'customer 1', '12345"', ‘'town 1');

INSERT INTO account
VALUES('0123456789', 'customer 2', '23456', 'town 2'):

INSERT INTO account
VALUES('1234567890', 'customer 3', '34567', 'town 3');

INSERT INTO account
VALUES('0100100101', 'customer 4', '52066', 'town 4'):

INSERT INTO account
VALUES ('0040055432"', 'customer 5', '01234', 'town 5');

16

© August 2008, PostgreSQL, Author: Susanne Ebrecht

Views

By using a view you can couple data from different table with dependency
to each other.

CREATE VIEW v customer booking

(c name, place, account, point of time, kind, val, txt)
AS SELECT

a.customer name,

a.zip code || " ' || a.town,

a.account no,

b.ts, b.direction, b.val, b.txt

FROM account AS a, booking AS b

WHERE a.account no = b.account no;

© August 2008, PostgreSQL, Author: Susanne Ebrecht

Constraints

PostgreSQL knows find different constraints:

= NOT NULL.: It is mandatory that there is a value in all rows of the column

= DEFAULT: If there is no value given for the column at the insert statement
then the default value will be inserted

= FOREIGN KEY: To check if there is a matching value in the column of the
referenced table

= UNIQUE: The values must be unique. Duplicates are forbidden

= CHECK: To check for invalid data input

18

© August 2008, PostgreSQL, Author: Susanne Ebrecht

Add Constraint

ALTER TABLE account ADD CONSTRAINT c zip check
CHECK (zip code SIMILAR TO '[0-9][0-9][0-9][0-9][0-9]");

ALTER TABLE booking ADD CONSTRAINT c direction check
CHECK (direction in ('+','-"));

ALTER TABLE booking ADD CONSTRAINT c value check
CHECK (val > 0);

ALTER TABLE booking ALTER COLUMN direction SET NOT NULL;

ALTER TABLE booking ALTER COLUMN val SET NOT NULL;

© August 2008, PostgreSQL, Author: Susanne Ebrecht

19

Constraint tests

INSERT INTO account
VALUES ('5234440001', 'customer 6', '1234', 'town 6');

INSERT INTO account
VALUES ('5234440001', 'customer 6', 'l2a34', 'town 6');

INSERT INTO booking(account no, direction, val)
VALUES ('0123456789', 'a', 23.42);

INSERT INTO booking(account no, direction, val)
VALUES ('0123456789"', '+', -23.42);

INSERT INTO booking(account no, val)
VALUES ('0123456789"', '23.42');

INSERT INTO booking(account no, direction)
VALUES ('0123456789', '-');

© August 2008, PostgreSQL, Author: Susanne Ebrecht

20

Server side functions

PostgreSQL already offers multiple functions but additionally you can create
your own functions. As programming language you can use SQL or
PLPGSQL but you also can use almost all common programming
languages like C, C++, Java, Perl, Python, Ruby, PHP, TCL, Shell, ...

Before you can use another language then SQL you have to load the
language to your database:

$ cd /home/username/pgsql83
$./bin/createlang plpgsgl <database name>

© August 2008, PostgreSQL, Author: Susanne Ebrecht

21

Balance determination

CREATE OR REPLACE FUNCTION balance(
t CHAR(1), v NUMERIC(10,2))
RETURNS NUMERIC(10,2) AS

$$
DECLARE
rtrn NUMERIC(10,2);
BEGIN
IF t = '+' THEN
rtrn := v;
ELSE
rtrn := v * -1;
END IF;
RETURN rtrn;
END;
$$

LANGUAGE plpgsql;

© August 2008, PostgreSQL, Author: Susanne Ebrecht

22

Function Categories

= VOLATILE

A VOLATILE function can do anything, including modifying the
database. It can return different results on successive calls with the
same arguments.

= STABLE

A STABLE function cannot modify the database and is guaranteed
to return the same results given the same arguments for all rows
within a single statement.

* IMMUTABLE

An IMMUTABLE function cannot modify the database and is
guaranteed to return the same results given the same arguments
forever.

© August 2008, PostgreSQL, Author: Susanne Ebrecht

23

Create temporary table

CREATE OR REPLACE FUNCTION create temp table()
RETURNS VOID AS
$$
BEGIN
BEGIN /* make sure that table not exists */
EXECUTE 'DROP TABLE IF EXISTS prev balance';
END;
EXECUTE 'CREATE TEMPORARY TABLE prev balance(
id INTEGER NOT NULL,
balance NUMERIC(10,2) NOT NULL
)"
EXECUTE 'INSERT INTO prev balance(id, balance)
VALUES(1, 0.0)"';
RETURN;
END;
$$ LANGUAGE plpgsql VOLATILE;

24
© August 2008, PostgreSQL, Author: Susanne Ebrecht

Preview balance

CREATE OR REPLACE FUNCTION prev balance(
in balance NUMERIC(10,2))
RETURNS NUMERIC(10,2) AS $%
DECLARE
out balance NUMERIC(10,2);
rec RECORD;
qry TEXT;
BEGIN
EXECUTE 'UPDATE prev balance SET balance =
balance + ' || in balance || ' WHERE id=1';
qry := 'SELECT balance FROM prev balance WHERE id=1"';
FOR rec IN EXECUTE qry LOOP
out balance := rec.balance;
END LOOP;
RETURN out balance;
END;
$$ LANGUAGE plpgsql VOLATILE;

25

© August 2008, PostgreSQL, Author: Susanne Ebrecht

Create a data type

Our main function should return a list of values. It is a Set Returning Function
(SRF). There for we need to define a data type.

CREATE TYPE balance info AS

(

account no TEXT,

point of time TIMESTAMP WITH TIME ZONE,
posting NUMERIC(10,2),

debit NUMERIC(10,2),

txt TEXT,

balance NUMERIC(10,2)

);

© August 2008, PostgreSQL, Author: Susanne Ebrecht

26

Main function in SQL

CREATE OR REPLACE FUNCTION info balance(accno text)
RETURNS SETOF balance info AS

$$

SELECT create temp table();

SELECT account no, ts,

CASE WHEN direction = '+' THEN val

WHEN direction = '-' THEN NULL
END AS posting,
CASE WHEN direction = '-' THEN val

WHEN direction = '+' THEN NULL
END as debit,
txt,

prev _balance(balance(direction, val)::NUMERIC(10,2)) AS
balance

FROM (SELECT account no, ts, direction, val, txt
FROM booking

WHERE account no = $1 ORDER BY ts) AS x;

$$ LANGUAGE SQL VOLATILE;

© August 2008, PostgreSQL, Author: Susanne Ebrecht

27

Add a column

ALTER TABLE account
ADD COLUMN overdraft facility NUMERIC(10,2);

ALTER TABLE account ALTER COLUMN overdraft facility
SET DEFAULT 0.00;

© August 2008, PostgreSQL, Author: Susanne Ebrecht

28

Trigger to control overdraft facility

CREATE OR REPLACE FUNCTION check overdraft()
RETURNS TRIGGER AS $%
DECLARE
actual NUMERIC(10,2);
available NUMERIC(10,2);
BEGIN
IF NEW.direction = '+' THEN
RETURN NEW;
END IF;
SELECT INTO actual SUM(CASE WHEN direction = '+' THEN val
ELSE val * -1 END)
FROM booking where account no = NEW.account no;
IF actual IS NULL THEN actual := 0;
END IF;
SELECT INTO available overdraft facility * -1
FROM account where account no = NEW.account no;
IF available IS NULL THEN available := 0;
END IF;
IF available > (actual - NEW.val) THEN

RAISE EXCEPTION 'No money avalable. Booking canceled.';

END IF;
RETURN NEW;
END;
$$ LANGUAGE PLPGSQL VOLATILE;

© August 2008, PostgreSQL, Author: Susanne Ebrecht

29

Trigger

CREATE TRIGGER overdraft fac check
BEFORE INSERT OR UPDATE ON booking
FOR EACH ROW EXECUTE PROCEDURE
check overdraft();

© August 2008, PostgreSQL, Author: Susanne Ebrecht

30

Data

UPDATE account SET overdraft facility

WHERE customer name = 'customer 1°';

UPDATE account SET overdraft facility

WHERE customer name = ‘customer 2°';

UPDATE account SET overdraft facility

WHERE customer name = 'customer 3';

500

750

250

© August 2008, PostgreSQL, Author: Susanne Ebrecht

31

Transactions

When customer A wants to transfer money to customer B then you
have two bookings. What happens if there is a power failure in the
middle of the transfer?

To avoid that customer A lost money and customer B never will get
money, we will do these two steps with a single transaction. A
function always is just one transaction automatically.

© August 2008, PostgreSQL, Author: Susanne Ebrecht

32

Transfer function

CREATE OR REPLACE FUNCTION transfer(from TEXT,
~to TEXT,
~sum NUMERIC(10,2),
usage TEXT)

RETURNS BOOLEAN AS

$$
INSERT INTO booking(account no, ts, direction, val, txt)
VALUES($1, current timestamp, '-', $3, $4);

INSERT INTO booking(account no, ts, direction, val, txt)
VALUES($2, current timestamp, '+', $3, $4);

SELECT TRUE;

$$
LANGUAGE SQL;

© August 2008, PostgreSQL, Author: Susanne Ebrecht

33

Test

SELECT transfer(
(SELECT account no FROM account

WHERE customer name = 'customer 1'),
(SELECT account no FROM account

WHERE customer name = 'customer 2'),
100.00,

'‘Transfer from customer 1 to customer 2');

SELECT * FROM info balance(
(SELECT account no FROM account
WHERE customer name = 'customer 1'));

SELECT * FROM info balance(
(SELECT account no FROM account
WHERE customer name = 'customer 2'));

© August 2008, PostgreSQL, Author: Susanne Ebrecht

34

Test (transfer money back)

SELECT transfer(
(SELECT account no FROM account

WHERE customer name = 'customer 2'),
(SELECT account no FROM account

WHERE customer name = 'customer 1'),
100.00,

'‘Transfer from customer 2 to customer 1');

SELECT * FROM info balance(
(SELECT account no FROM account
WHERE customer name = 'customer 1'));

SELECT * FROM info balance(
(SELECT account no FROM account
WHERE customer name = 'customer 2'));

© August 2008, PostgreSQL, Author: Susanne Ebrecht

35

View informations

SELECT * FROM v customer booking;

© August 2008, PostgreSQL, Author: Susanne Ebrecht

36

View informations

Let's try to overdraw the overdraft facility ...

SELECT transfer(
(SELECT account no FROM account

WHERE customer name = 'customer 5'),
(SELECT account no FROM account

WHERE customer name = 'customer 4'),
300.00,

'Transfer from customer 5 to customer 4');

SELECT * FROM info balance(
(SELECT account no FROM account
WHERE customer name = 'customer 5'));

SELECT * FROM info balance(
(SELECT account no FROM account
WHERE customer name = 'customer 4'));

© August 2008, PostgreSQL, Author: Susanne Ebrecht

37

Rules

Law says that you have to correct a false entry with a reversing entry
and not by removing the entry. This means we should forbid
DELETE or UPDATE on the booking table.

CREATE RULE dont delete AS ON DELETE
TO booking DO INSTEAD NOTHING;

CREATE RULE dont update AS ON UPDATE
TO booking DO INSTEAD NOTHING;

DELETE FROM booking;

© August 2008, PostgreSQL, Author: Susanne Ebrecht

38

MVCC

Multi Version Concurrency Control (MVCC) makes sure that
everbody who works on a session at a database really only will see
valid data.

This is easy to demonstrate. Just take to database connections and
start a transaction (BEGIN;). At the first connection just start a
transfer and at the second connection look into the booking table.

You will see the transfer only after it was commited sucessfully
(COMMIT;).

© August 2008, PostgreSQL, Author: Susanne Ebrecht

39

Closing words

| will hope that you enjoyed the workshop.

Thanks for listening

http://www.postgresql.org

© August 2008, PostgreSQL, Author: Susanne Ebrecht

40

