
Make your database
code sing!

How to increase your coding productivity 10X or more
Jim Nasby - Enova Financial

Sunday, September 18, 2011

The Problem

Sunday, September 18, 2011

Procedural Languages
have improved vastly

since the 1970s

Sunday, September 18, 2011

Procedural
Improvements

Sunday, September 18, 2011

• First there were libraries and #include

Procedural
Improvements

Sunday, September 18, 2011

• First there were libraries and #include

• That evolved to Object Oriented
Programming, which led to...

Procedural
Improvements

Sunday, September 18, 2011

• First there were libraries and #include

• That evolved to Object Oriented
Programming, which led to...

• code that is easy to factor, which means

Procedural
Improvements

Sunday, September 18, 2011

• First there were libraries and #include

• That evolved to Object Oriented
Programming, which led to...

• code that is easy to factor, which means

• code re-use is easy!

Procedural
Improvements

Sunday, September 18, 2011

Why is code re-use
important?

Sunday, September 18, 2011

“Society advances by
increasing the

complexity of what
people can do without

thinking”

Sunday, September 18, 2011

In today’s world...

Sunday, September 18, 2011

In today’s world...

• Your car starts when you turn the key (no
messing with mixture, ignition timing, etc)

Sunday, September 18, 2011

In today’s world...

• Your car starts when you turn the key (no
messing with mixture, ignition timing, etc)

• You throw the clothes in the washing
machine

Sunday, September 18, 2011

In today’s world...

• Your car starts when you turn the key (no
messing with mixture, ignition timing, etc)

• You throw the clothes in the washing
machine

• You don’t worry about getting across the
country, you worry about getting to the
airport

Sunday, September 18, 2011

Code re-use allows you
to do more complex

things without thinking

Sunday, September 18, 2011

What’s improved with
database coding since

1970?

Sunday, September 18, 2011

...

Sunday, September 18, 2011

Not much!

Sunday, September 18, 2011

One of the most used
tools for database

coding is still

Sunday, September 18, 2011

 CUT, PASTE and
REPLACE!

Sunday, September 18, 2011

Much database
development is done by
pasting the same code
over and over because

we lack things like
classes

Sunday, September 18, 2011

Ex: Lookup table
CREATE TABLE customer_status(
 customer_status_id int PK

 , customer_status text
UNIQUE

);

Sunday, September 18, 2011

Process

Sunday, September 18, 2011

Process

• Find another place where a lookup table
was created

Sunday, September 18, 2011

Process

• Find another place where a lookup table
was created

• Copy and Paste it

Sunday, September 18, 2011

Process

• Find another place where a lookup table
was created

• Copy and Paste it

• Replace “customer” with something new

Sunday, September 18, 2011

Problems

Sunday, September 18, 2011

Problems

• Tedious

Sunday, September 18, 2011

Problems

• Tedious

• Time consuming

Sunday, September 18, 2011

Problems

• Tedious

• Time consuming

• Error prone

Sunday, September 18, 2011

The problems get
worse as complexity

increases

Sunday, September 18, 2011

Actual lookup table

Sunday, September 18, 2011

Actual lookup table

• Table

Sunday, September 18, 2011

Actual lookup table

• Table

• Permissions

Sunday, September 18, 2011

Actual lookup table

• Table

• Permissions

• __get_id(), __get_text(), __get()

Sunday, September 18, 2011

Actual lookup table

• Table

• Permissions

• __get_id(), __get_text(), __get()

• Unit tests

Sunday, September 18, 2011

When dealing with
real-world code

duplication, it becomes
almost impossible not

to mess it up

Sunday, September 18, 2011

It’s also not possible to
add a new feature to
ALL your duplicated
code without a lot of

extra work

Sunday, September 18, 2011

How do we change
this?

Sunday, September 18, 2011

Real change here would
require serious changes

to our RDBMS... like
adding support for

classes

Sunday, September 18, 2011

... but I’m NOT
PATIENT!

Sunday, September 18, 2011

... but I’m NOT
PATIENT!

So let’s see what we can do with what we already have.

Sunday, September 18, 2011

Our weapons!

• Helper functions

• Meta-programming

• Breaking one database into components

• Data inheritance

Sunday, September 18, 2011

Helper functions
Don’t cut and paste - Create functions!

Sunday, September 18, 2011

Helper functions

Sunday, September 18, 2011

Helper functions

• array_length

• is_empty_or_null

• parameter_replace

• string_or_array

• table_full_name

• table_schema_and_name

Sunday, September 18, 2011

Just don’t repeat
yourself!

Sunday, September 18, 2011

Metacode

Sunday, September 18, 2011

Computers are really
good at repetitive

tasks...

Sunday, September 18, 2011

... so let’s make them
write code for us!

Sunday, September 18, 2011

Metacode Goals

Sunday, September 18, 2011

Metacode Goals

• Make it EASY to create new database
objects

Sunday, September 18, 2011

Metacode Goals

• Make it EASY to create new database
objects

• Allow us to TRACK objects that we have
created

Sunday, September 18, 2011

Metacode Goals

• Make it EASY to create new database
objects

• Allow us to TRACK objects that we have
created

• Enable MODIFYING objects that have been
created

Sunday, September 18, 2011

Goal: Easy to create
Allow a single function call to create a number of

objects for us

Sunday, September 18, 2011

code.lookup_static()

Sunday, September 18, 2011

code.lookup_static()

• Create a lookup table to normalize a text
field, ie: a status code

Sunday, September 18, 2011

code.lookup_static()

• Create a lookup table to normalize a text
field, ie: a status code

• Create all our indexes

Sunday, September 18, 2011

code.lookup_static()

• Create a lookup table to normalize a text
field, ie: a status code

• Create all our indexes

• Assign permissions on the table

Sunday, September 18, 2011

code.lookup_static()

• Create a lookup table to normalize a text
field, ie: a status code

• Create all our indexes

• Assign permissions on the table

• Call other metacode functions that create
“__get()” functions for our new lookup table

Sunday, September 18, 2011

Goal: Easy to create
Have a single function call handle ALL the details for an

object

Sunday, September 18, 2011

code.function()

Sunday, September 18, 2011

code.function()

• Create a database function

Sunday, September 18, 2011

code.function()

• Create a database function

• Make it easy to set custom function
permissions

Sunday, September 18, 2011

code.function()

• Create a database function

• Make it easy to set custom function
permissions

• Make it easy to add a comment to the
function

Sunday, September 18, 2011

code.function()
Metacode makes this EASY by removing the
need to cut and paste the function
parameters over and over.

Sunday, September 18, 2011

Goal: Easy to Track
Allow for tracking of objects created by metacode

Sunday, September 18, 2011

Tracking

Sunday, September 18, 2011

Tracking

• Tracked objects are built from templates

Sunday, September 18, 2011

Tracking

• Tracked objects are built from templates

• A template contains %TAGS% that are
replaced to give us our final SQL that creates
objects

Sunday, September 18, 2011

code.lookup_static()

Sunday, September 18, 2011

code.lookup_static()
SELECT code.lookup_static(‘loan_status’);

Sunday, September 18, 2011

code.lookup_static()
SELECT code.lookup_static(‘loan_status’);

Uses the template:
CREATE TABLE %status_name% (
%status_name%_id smallint PRIMARY KEY
, %status_name% citext UNIQUE);

Sunday, September 18, 2011

code.lookup_static()
SELECT code.lookup_static(‘loan_status’);

Uses the template:
CREATE TABLE %status_name% (
%status_name%_id smallint PRIMARY KEY
, %status_name% citext UNIQUE);

Which gives us this SQL:
CREATE TABLE loan_status (
loan_status_id smallint PRIMARY KEY
, loan_status citext UNIQUE);

Sunday, September 18, 2011

Tracking

Sunday, September 18, 2011

Tracking

• The metacode system stores templates

Sunday, September 18, 2011

Tracking

• The metacode system stores templates

• When you use a template to create
something, the system remembers the
template and parameters that you used

Sunday, September 18, 2011

Tracking

• The metacode system stores templates

• When you use a template to create
something, the system remembers the
template and parameters that you used

• This way, you can always see what database
objects have been created by metacode

Sunday, September 18, 2011

Tracking

• The metacode system stores templates

• When you use a template to create
something, the system remembers the
template and parameters that you used

• This way, you can always see what database
objects have been created by metacode

• Tracking is optional (ie: code.function())

Sunday, September 18, 2011

Goal: Allow for
Modifying

Because everything can be tracked, it can also be
modified

Sunday, September 18, 2011

Modifying

Sunday, September 18, 2011

Modifying

• All templates are versioned

Sunday, September 18, 2011

Modifying

• All templates are versioned

• Template versions store upgrade templates

Sunday, September 18, 2011

Modifying

• All templates are versioned

• Template versions store upgrade templates

• Upgrade templates allow upgrading existing
metacode objects (ie: loan_status) to a
newer version

Sunday, September 18, 2011

Modifying

• All templates are versioned

• Template versions store upgrade templates

• Upgrade templates allow upgrading existing
metacode objects (ie: loan_status) to a
newer version

• Templates also tell us how to drop objects

Sunday, September 18, 2011

Our weapons!

• Helper functions

• Meta-programming

• Breaking one database into components

• Data inheritance

Sunday, September 18, 2011

Components
Make it easy to re-use large amounts of code in

different databases

Sunday, September 18, 2011

Components are
libraries of database

code that are used in
multiple databases

Sunday, September 18, 2011

#include

Sunday, September 18, 2011

Components

Sunday, September 18, 2011

Components

• A component is comprised of a number of
database schemas and all the objects in those
schemas

Sunday, September 18, 2011

Components

• A component is comprised of a number of
database schemas and all the objects in those
schemas

• Each component has a set of specific roles
for object ownership and permissions

Sunday, September 18, 2011

Components

• A component is comprised of a number of
database schemas and all the objects in those
schemas

• Each component has a set of specific roles
for object ownership and permissions

• All code and unit tests for a component are
kept together, and separated from other
components

Sunday, September 18, 2011

Component Examples

Sunday, September 18, 2011

Component Examples

• Your helper functions and other tools will
work in ALL your databases... so make them
a component!

Sunday, September 18, 2011

Component Examples

• Your helper functions and other tools will
work in ALL your databases... so make them
a component!

• Basic tracking of personal information
(name, addresses, phone numbers)

Sunday, September 18, 2011

Component Examples

• Your helper functions and other tools will
work in ALL your databases... so make them
a component!

• Basic tracking of personal information
(name, addresses, phone numbers)

• Accounting / General ledger

Sunday, September 18, 2011

Data Inheritance
Re-use your code AND your data

Sunday, September 18, 2011

Table inheritance

Sunday, September 18, 2011

Table inheritance

• Feature built-in to Postgres

Sunday, September 18, 2011

Table inheritance

• Feature built-in to Postgres

• A child table inherits it’s definition from
one or more parent tables

Sunday, September 18, 2011

Table inheritance

• Feature built-in to Postgres

• A child table inherits it’s definition from
one or more parent tables

• A child can add it’s own unique definition

Sunday, September 18, 2011

Table inheritance

• Feature built-in to Postgres

• A child table inherits it’s definition from
one or more parent tables

• A child can add it’s own unique definition

• By default, data in child tables will show up
when you query a parent

Sunday, September 18, 2011

Inheritance Example

Sunday, September 18, 2011

Inheritance Example

• Customers have different ways to pay (bank
account, debit card, Paypal, etc)

Sunday, September 18, 2011

Inheritance Example

• Customers have different ways to pay (bank
account, debit card, Paypal, etc)

• Some fields are common to all methods

Sunday, September 18, 2011

Inheritance Example

• Customers have different ways to pay (bank
account, debit card, Paypal, etc)

• Some fields are common to all methods

• Parent table: payment_instrument(
payment_instrument_id
, customer_id
, payment_instrument_type_id);

Sunday, September 18, 2011

Inheritance Example

Sunday, September 18, 2011

Inheritance Example

• Child table: bank_account(
routing_number
, account_number)
INHERITS(payment_instrument)

Sunday, September 18, 2011

Inheritance Example

• Child table: bank_account(
routing_number
, account_number)
INHERITS(payment_instrument)

• Child table: debit_card(
card_token
, expiration_date)
INHERITS(payment_instrument)

Sunday, September 18, 2011

Inheritance Downsides

Sunday, September 18, 2011

Inheritance Downsides

• Some things (ie: indexes) do not inherit

Sunday, September 18, 2011

Inheritance Downsides

• Some things (ie: indexes) do not inherit

• Sometimes you want something inherited
by only certain tables

Sunday, September 18, 2011

Inheritance Downsides

• Some things (ie: indexes) do not inherit

• Sometimes you want something inherited
by only certain tables

• No cross-table unique indexes

Sunday, September 18, 2011

Inheritance Downsides

• Some things (ie: indexes) do not inherit

• Sometimes you want something inherited
by only certain tables

• No cross-table unique indexes

• No foreign keys referring to parent table

Sunday, September 18, 2011

Metacode to the
rescue!

Sunday, September 18, 2011

Inheritance Metacode

Sunday, September 18, 2011

Inheritance Metacode

• Allows defining things that you want added
to all (or most) child tables of a parent

Sunday, September 18, 2011

Inheritance Metacode

• Allows defining things that you want added
to all (or most) child tables of a parent

• Uses %tag% replacement

Sunday, September 18, 2011

Our weapons!

• Helper functions

• Meta-programming

• Breaking one database into components

• Data inheritance

Sunday, September 18, 2011

Ask yourself: “What am
I repeating over and

over?”

Sunday, September 18, 2011

Case-study: lookup
tables

• Table, permissions

• Marked as seed data

• code.get, code.get_id, code.get_text

• All of this is unit tested

Sunday, September 18, 2011

Case-study: lookup
tables

Sunday, September 18, 2011

Case-study: lookup
tables

• Framework development: ~24 hours

Sunday, September 18, 2011

Case-study: lookup
tables

• Framework development: ~24 hours

• Development of code.lookup_table_static
and 3 other metacode functions: ~16 hours

Sunday, September 18, 2011

Case-study: lookup
tables

• Framework development: ~24 hours

• Development of code.lookup_table_static
and 3 other metacode functions: ~16 hours

• 97 uses (and growing)

Sunday, September 18, 2011

Case-study: lookup
tables

• Framework development: ~24 hours

• Development of code.lookup_table_static
and 3 other metacode functions: ~16 hours

• 97 uses (and growing)

• Minimum 15 minutes for cut and paste x 97
uses = 24 hours

Sunday, September 18, 2011

Case-study: lookup
tables

Sunday, September 18, 2011

Case-study: lookup
tables

• Development of
code.lookup_table_dynamic: ~8 hours

Sunday, September 18, 2011

Case-study: lookup
tables

• Development of
code.lookup_table_dynamic: ~8 hours

• 17 uses (and growing)

Sunday, September 18, 2011

Case-study: lookup
tables

• Development of
code.lookup_table_dynamic: ~8 hours

• 17 uses (and growing)

• Minimum 30 minutes for cut and paste x 17
uses = 8.5 hours

Sunday, September 18, 2011

The real difference

Sunday, September 18, 2011

The real difference

• Say you get REALLY good at cut and paste

Sunday, September 18, 2011

The real difference

• Say you get REALLY good at cut and paste

• Down to 5 minutes!

Sunday, September 18, 2011

The real difference

• Say you get REALLY good at cut and paste

• Down to 5 minutes!

• How long does it take to type
SELECT code.lookup_table_static
(‘cnu’, ‘loan_statuses’,
‘loan_status’);

Sunday, September 18, 2011

The real difference

• Say you get REALLY good at cut and paste

• Down to 5 minutes!

• How long does it take to type
SELECT code.lookup_table_static
(‘cnu’, ‘loan_statuses’,
‘loan_status’);

• 16 seconds - 19x faster!

Sunday, September 18, 2011

The real difference

Sunday, September 18, 2011

The real difference

• How long does it take to type
SELECT code.lookup_view
(‘loans’);

Sunday, September 18, 2011

The real difference

• How long does it take to type
SELECT code.lookup_view
(‘loans’);

• 8 seconds

Sunday, September 18, 2011

The real difference

• How long does it take to type
SELECT code.lookup_view
(‘loans’);

• 8 seconds

• Now you have a denormalized view on that
table, and you CAN NOT cut and paste
that!

Sunday, September 18, 2011

Ask yourself: “What am
I repeating over and

over?”

Sunday, September 18, 2011

Use our weapons to
work smarter

Sunday, September 18, 2011

Use our weapons to
work smarter

... and give us more time at the bar!

Sunday, September 18, 2011

“Wow, that’s awesome
Jim! Where can I get all

this cool stuff?!!”

Sunday, September 18, 2011

http://pgfoundry.org/
projects/enova-tools/

Sunday, September 18, 2011

http://pgfoundry.org/projects/enova-tools/
http://pgfoundry.org/projects/enova-tools/
http://pgfoundry.org/projects/enova-tools/
http://pgfoundry.org/projects/enova-tools/

http://pgfoundry.org/
projects/enova-tools/

Questions?

Sunday, September 18, 2011

http://pgfoundry.org/projects/enova-tools/
http://pgfoundry.org/projects/enova-tools/
http://pgfoundry.org/projects/enova-tools/
http://pgfoundry.org/projects/enova-tools/

http://meetup.com/
Chicago-PostgreSQL-

User-Group/

Sunday, September 18, 2011

http://www.meetup.com/Chicago-PostgreSQL-User-Group/
http://www.meetup.com/Chicago-PostgreSQL-User-Group/
http://www.meetup.com/Chicago-PostgreSQL-User-Group/
http://www.meetup.com/Chicago-PostgreSQL-User-Group/
http://www.meetup.com/Chicago-PostgreSQL-User-Group/
http://www.meetup.com/Chicago-PostgreSQL-User-Group/

