
Make your database 
code sing!

How to increase your coding productivity 10X or more
Jim Nasby - Enova Financial
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The Problem
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Procedural Languages 
have improved vastly 

since the 1970s
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• First there were libraries and #include

• That evolved to Object Oriented 
Programming, which led to...

• code that is easy to factor, which means

• code re-use is easy!

Procedural 
Improvements
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Why is code re-use 
important?
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“Society advances by 
increasing the 

complexity of what 
people can do without 

thinking”
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In today’s world...
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In today’s world...

• Your car starts when you turn the key (no 
messing with mixture, ignition timing, etc)
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In today’s world...

• Your car starts when you turn the key (no 
messing with mixture, ignition timing, etc)

• You throw the clothes in the washing 
machine

Sunday, September 18, 2011



In today’s world...

• Your car starts when you turn the key (no 
messing with mixture, ignition timing, etc)

• You throw the clothes in the washing 
machine

• You don’t worry about getting across the 
country, you worry about getting to the 
airport
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Code re-use allows you 
to do more complex 

things without thinking
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What’s improved with 
database coding since 

1970?
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...
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Not much!
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One of the most used 
tools for database 

coding is still
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 CUT, PASTE and 
REPLACE!
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Much database 
development is done by 
pasting the same code 
over and over because 

we lack things like 
classes
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Ex: Lookup table
CREATE TABLE customer_status(
  customer_status_id int PK

  , customer_status text 
UNIQUE

);
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Process
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Process

• Find another place where a lookup table 
was created
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Process

• Find another place where a lookup table 
was created

• Copy and Paste it
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Process

• Find another place where a lookup table 
was created

• Copy and Paste it

• Replace “customer” with something new
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Problems
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Problems

• Tedious
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Problems

• Tedious

• Time consuming
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Problems

• Tedious

• Time consuming

• Error prone
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The problems get 
worse as complexity 

increases
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Actual lookup table
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Actual lookup table

• Table
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Actual lookup table

• Table

• Permissions
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Actual lookup table

• Table

• Permissions

• __get_id(), __get_text(), __get()
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Actual lookup table

• Table

• Permissions

• __get_id(), __get_text(), __get()

• Unit tests
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When dealing with 
real-world code 

duplication, it becomes 
almost impossible not 

to mess it up
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It’s also not possible to 
add a new feature to 
ALL your duplicated 
code without a lot of 

extra work
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How do we change 
this?
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Real change here would 
require serious changes 

to our RDBMS... like 
adding support for 

classes
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... but I’m NOT 
PATIENT!
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... but I’m NOT 
PATIENT!

So let’s see what we can do with what we already have.
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Our weapons!

• Helper functions

• Meta-programming

• Breaking one database into components

• Data inheritance

Sunday, September 18, 2011



Helper functions
Don’t cut and paste - Create functions!
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Helper functions
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Helper functions

• array_length

• is_empty_or_null

• parameter_replace

• string_or_array

• table_full_name

• table_schema_and_name
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Just don’t repeat 
yourself!
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Metacode
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Computers are really 
good at repetitive 

tasks...
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... so let’s make them 
write code for us!
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Metacode Goals
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Metacode Goals

• Make it EASY to create new database 
objects
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Metacode Goals

• Make it EASY to create new database 
objects

• Allow us to TRACK objects that we have 
created
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Metacode Goals

• Make it EASY to create new database 
objects

• Allow us to TRACK objects that we have 
created

• Enable MODIFYING objects that have been 
created
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Goal: Easy to create
Allow a single function call to create a number of 

objects for us
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code.lookup_static()
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code.lookup_static()

• Create a lookup table to normalize a text 
field, ie: a status code
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code.lookup_static()

• Create a lookup table to normalize a text 
field, ie: a status code

• Create all our indexes
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code.lookup_static()

• Create a lookup table to normalize a text 
field, ie: a status code

• Create all our indexes

• Assign permissions on the table
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code.lookup_static()

• Create a lookup table to normalize a text 
field, ie: a status code

• Create all our indexes

• Assign permissions on the table

• Call other metacode functions that create 
“__get()” functions for our new lookup table
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Goal: Easy to create
Have a single function call handle ALL the details for an 

object
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code.function()
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code.function()

• Create a database function
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code.function()

• Create a database function

• Make it easy to set custom function 
permissions
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code.function()

• Create a database function

• Make it easy to set custom function 
permissions

• Make it easy to add a comment to the 
function
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code.function()
Metacode makes this EASY by removing the 
need to cut and paste the function 
parameters over and over.
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Goal: Easy to Track
Allow for tracking of objects created by metacode
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Tracking
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Tracking

• Tracked objects are built from templates
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Tracking

• Tracked objects are built from templates

• A template contains %TAGS% that are 
replaced to give us our final SQL that creates 
objects
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code.lookup_static()
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code.lookup_static()
SELECT code.lookup_static( ‘loan_status’ );
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code.lookup_static()
SELECT code.lookup_static( ‘loan_status’ );

Uses the template:
CREATE TABLE %status_name% ( 
%status_name%_id smallint PRIMARY KEY
, %status_name% citext UNIQUE);
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code.lookup_static()
SELECT code.lookup_static( ‘loan_status’ );

Uses the template:
CREATE TABLE %status_name% ( 
%status_name%_id smallint PRIMARY KEY
, %status_name% citext UNIQUE);

Which gives us this SQL:
CREATE TABLE loan_status (
loan_status_id smallint PRIMARY KEY
, loan_status citext UNIQUE);
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Tracking
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Tracking

• The metacode system stores templates
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Tracking

• The metacode system stores templates

• When you use a template to create 
something, the system remembers the 
template and parameters that you used
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Tracking

• The metacode system stores templates

• When you use a template to create 
something, the system remembers the 
template and parameters that you used

• This way, you can always see what database 
objects have been created by metacode
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Tracking

• The metacode system stores templates

• When you use a template to create 
something, the system remembers the 
template and parameters that you used

• This way, you can always see what database 
objects have been created by metacode

• Tracking is optional ( ie: code.function() )

Sunday, September 18, 2011



Goal: Allow for 
Modifying

Because everything can be tracked, it can also be 
modified
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Modifying
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Modifying

• All templates are versioned
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Modifying

• All templates are versioned

• Template versions store upgrade templates
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Modifying

• All templates are versioned

• Template versions store upgrade templates

• Upgrade templates allow upgrading existing 
metacode objects (ie: loan_status) to a 
newer version
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Modifying

• All templates are versioned

• Template versions store upgrade templates

• Upgrade templates allow upgrading existing 
metacode objects (ie: loan_status) to a 
newer version

• Templates also tell us how to drop objects
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Our weapons!

• Helper functions

• Meta-programming

• Breaking one database into components

• Data inheritance
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Components
Make it easy to re-use large amounts of code in 

different databases
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Components are 
libraries of database 

code that are used in 
multiple databases
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#include
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Components
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Components

• A component is comprised of a number of 
database schemas and all the objects in those 
schemas
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Components

• A component is comprised of a number of 
database schemas and all the objects in those 
schemas

• Each component has a set of specific roles 
for object ownership and permissions
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Components

• A component is comprised of a number of 
database schemas and all the objects in those 
schemas

• Each component has a set of specific roles 
for object ownership and permissions

• All code and unit tests for a component are 
kept together, and separated from other 
components
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Component Examples
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Component Examples

• Your helper functions and other tools will 
work in ALL your databases... so make them 
a component!
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Component Examples

• Your helper functions and other tools will 
work in ALL your databases... so make them 
a component!

• Basic tracking of personal information 
(name, addresses, phone numbers)
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Component Examples

• Your helper functions and other tools will 
work in ALL your databases... so make them 
a component!

• Basic tracking of personal information 
(name, addresses, phone numbers)

• Accounting / General ledger
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Data Inheritance
Re-use your code AND your data
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Table inheritance
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Table inheritance

• Feature built-in to Postgres
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Table inheritance

• Feature built-in to Postgres

• A child table inherits it’s definition from 
one or more parent tables
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Table inheritance

• Feature built-in to Postgres

• A child table inherits it’s definition from 
one or more parent tables

• A child can add it’s own unique definition
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Table inheritance

• Feature built-in to Postgres

• A child table inherits it’s definition from 
one or more parent tables

• A child can add it’s own unique definition

• By default, data in child tables will show up 
when you query a parent
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Inheritance Example
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Inheritance Example

• Customers have different ways to pay (bank 
account, debit card, Paypal, etc)
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Inheritance Example

• Customers have different ways to pay (bank 
account, debit card, Paypal, etc)

• Some fields are common to all methods
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Inheritance Example

• Customers have different ways to pay (bank 
account, debit card, Paypal, etc)

• Some fields are common to all methods

• Parent table: payment_instrument(
payment_instrument_id
, customer_id
, payment_instrument_type_id);
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Inheritance Example
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Inheritance Example

• Child table: bank_account(
routing_number
, account_number )
INHERITS( payment_instrument )
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Inheritance Example

• Child table: bank_account(
routing_number
, account_number )
INHERITS( payment_instrument )

• Child table: debit_card(
card_token
, expiration_date )
INHERITS( payment_instrument )
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Inheritance Downsides
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Inheritance Downsides

• Some things (ie: indexes) do not inherit
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Inheritance Downsides

• Some things (ie: indexes) do not inherit

• Sometimes you want something inherited 
by only certain tables
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Inheritance Downsides

• Some things (ie: indexes) do not inherit

• Sometimes you want something inherited 
by only certain tables

• No cross-table unique indexes
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Inheritance Downsides

• Some things (ie: indexes) do not inherit

• Sometimes you want something inherited 
by only certain tables

• No cross-table unique indexes

• No foreign keys referring to parent table
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Metacode to the 
rescue!
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Inheritance Metacode

Sunday, September 18, 2011



Inheritance Metacode

• Allows defining things that you want added 
to all (or most) child tables of a parent
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Inheritance Metacode

• Allows defining things that you want added 
to all (or most) child tables of a parent

• Uses %tag% replacement
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Our weapons!

• Helper functions

• Meta-programming

• Breaking one database into components

• Data inheritance
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Ask yourself: “What am 
I repeating over and 

over?”
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Case-study: lookup 
tables

• Table, permissions

• Marked as seed data

• code.get, code.get_id, code.get_text

• All of this is unit tested
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Case-study: lookup 
tables
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Case-study: lookup 
tables

• Framework development: ~24 hours
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Case-study: lookup 
tables

• Framework development: ~24 hours

• Development of code.lookup_table_static 
and 3 other metacode functions: ~16 hours
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Case-study: lookup 
tables

• Framework development: ~24 hours

• Development of code.lookup_table_static 
and 3 other metacode functions: ~16 hours

• 97 uses (and growing)
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Case-study: lookup 
tables

• Framework development: ~24 hours

• Development of code.lookup_table_static 
and 3 other metacode functions: ~16 hours

• 97 uses (and growing)

• Minimum 15 minutes for cut and paste x 97 
uses = 24 hours
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Case-study: lookup 
tables
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Case-study: lookup 
tables

• Development of 
code.lookup_table_dynamic: ~8 hours
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Case-study: lookup 
tables

• Development of 
code.lookup_table_dynamic: ~8 hours

• 17 uses (and growing)
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Case-study: lookup 
tables

• Development of 
code.lookup_table_dynamic: ~8 hours

• 17 uses (and growing)

• Minimum 30 minutes for cut and paste x 17 
uses = 8.5 hours
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The real difference
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The real difference

• Say you get REALLY good at cut and paste
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The real difference

• Say you get REALLY good at cut and paste

• Down to 5 minutes!
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The real difference

• Say you get REALLY good at cut and paste

• Down to 5 minutes!

• How long does it take to type 
SELECT code.lookup_table_static
( ‘cnu’, ‘loan_statuses’, 
‘loan_status’ );
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The real difference

• Say you get REALLY good at cut and paste

• Down to 5 minutes!

• How long does it take to type 
SELECT code.lookup_table_static
( ‘cnu’, ‘loan_statuses’, 
‘loan_status’ );

• 16 seconds - 19x faster!
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The real difference
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The real difference

• How long does it take to type 
SELECT code.lookup_view
( ‘loans’ );
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The real difference

• How long does it take to type 
SELECT code.lookup_view
( ‘loans’ );

• 8 seconds
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The real difference

• How long does it take to type 
SELECT code.lookup_view
( ‘loans’ );

• 8 seconds

• Now you have a denormalized view on that 
table, and you CAN NOT cut and paste 
that!
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Ask yourself: “What am 
I repeating over and 

over?”
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Use our weapons to 
work smarter
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Use our weapons to 
work smarter

... and give us more time at the bar!
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“Wow, that’s awesome 
Jim! Where can I get all 

this cool stuff?!!”
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http://pgfoundry.org/
projects/enova-tools/
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http://pgfoundry.org/
projects/enova-tools/

Questions?
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http://meetup.com/
Chicago-PostgreSQL-

User-Group/
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