
/

 Achieving PCI Compliance
 with
 Postgres

Denish Patel	

Database Architect	

Who am I ?
•  Lead Database Architect @ OmniTI

•  Email: denish@omniti.com ; Twitter: @DenishPatel

•  http://www.pateldenish.com

•  Providing Solutions for business problems to deliver

•  Scalability

•  Reliability

•  High Availability

•  Consistency

•  Security

We are hiring!! Apply @ l42.org/lg

1	

Agendum

• PCI Introduction

• Merchant levels

• PCI compliance requirements

• How to achieve

• Common Myths

• QA

2	

•  PCI DSS is a result of the collaboration between all major
credit card companies (including Visa, MasterCard, JCB,
American Express, and Discover) that designed the PCI
DSS to establish industry-wide security requirements.

•  The Payment Card Industry (PCI) Data Security Standard
(DSS) is a set of specific credit card holder protection
regulations and guidance to combat identity theft.

•  PCI DSS v1.1 introduced in Sept 2006. PCI DSS v2.0
effective until December 31st, 2014

•  PCI DSS Version 3 published on Nov 2013 & effective
since Jan 1st, 2014

Introduction & History

3	

PCI DSS Applicability
If a Primary Account Number (PAN) is stored, processed, or

transmitted.
Data Element Storage

Permitted
 Render
data
unreadable

Card holder
data

Primary Account Number
(PAN)

Yes Yes (1)

Cardholder Name Yes No

Service Code Yes No

Expiration Date Yes No
Sensitive
authentication
data (2)

Full Magnetic Stripe Data No N/A

CAV2/CVC2/CVV2/CID No N/A

PIN/PIN Block No N/A

(1) PCI DSS requirements 3.3 and 3.4 apply only to PAN. (2) Sensitive authentication data
must not be stored after authorization (even if encrypted).

4	

Merchant Levels

Level 1 Level 2 Level 3 Level 4

TXN
Processed
Annually

 >6 M 1-6 M >20,000 &
< 1 M

< 20,000

Site Audit Annual No No No

Network
Scan

Quarterly Quarterly Quarterly Quarterly

SAQ Annual Annual Annual Annual

* Reference : http://usa.visa.com/merchants/protect-your-business/cisp/merchant-pci-dss-
compliance.jsp	

5	

Why Postgres?

“By default PostgreSQL is probably the most
security-aware database available”

– David Litchfield (The Database Hackers Handbook)

PostgreSQL offers encryption at several levels, and
provides flexibility in protecting data from disclosure due
to database server theft, unscrupulous administrators,
and insecure networks.

SE-PostgreSQL project SE-Linux will provide row level
security features on the par with Oracle – Oracle Label
Security and Virtual Private Database

6	

PCI DSS v3 : Objectives

Build and Maintain a Secure Network

Requirement 1: Install and maintain a firewall configuration to
protect cardholder data.

Requirement 2: Do not use vendor-supplied defaults for system
passwords and other security parameters.

Protect Cardholder Data

Requirement 3: Protect stored cardholder data.

Requirement 4: Encrypt transmission of cardholder data across
open, public networks.

7	

PCI DSS v3 : Objectives

Maintain Vulnerability Management Program

Requirement 5: Use and regularly update anti-virus software.

Requirement 6: Develop and maintain secure systems and
applications.

Implement Strong Access Control Measures

Requirement 7: Restrict access to cardholder data by business
need-to-know.

Requirement 8: Assign a unique ID to each person with
computer access.

Requirement 9: Restrict physical access to cardholder data.

8	

PCI DSS v3 : Objectives

Regularly Monitor and Test Networks

 Requirement 10: Track and monitor all access to network
resources and cardholder data.

 Requirement 11: Regularly test security systems and
processes.

Maintain an Information Security Policy

 Requirement 12: Maintain a policy that addresses
information security.

9	

Requirement # 1

Install and maintain a firewall configuration to protect
cardholder data.

10	

Requirement # 1

1.2 “Build a firewall configuration that denies all traffic from
“untrusted” networks and hosts, except for protocols
necessary for the cardholder data environment.”

PostgreSQL helps to achieve this requirement:

•  pg_hba.conf built-in security feature helps to deny or
limit database access from IP address ranges that are
deemed “untrusted.”

•  log_connections/disconnections settings helps to
centralize database connection logs to be kept at
centralized place

11	

Requirement # 2
Do not use vendor-supplied defaults for system

passwords and other security parameters.

•  Use a password for default “postgres” user

•  Don’t allow trust authentication from any host/user/
database in pg_hba.conf file. Not even from localhost
and postgres user.

•  Revoke remote login access on template1 and postgres
default databases

•  Grant limited permissions to monitoring user.

•  Revoke objects privileges from PUBLIC

•  Be careful about GRANTS

•  Security Definer functions and Views are your friends

12	

Example: Monitoring User

CREATE ROLE circonus
 WITH NOSUPERUSER NOCREATEROLE

NOCREATEDB LOGIN PASSWORD 'XXX’;

ALTER ROLE circonus SET search_path TO
secure_check_postgres, pg_catalog;

SET search_path to secure_check_postgres;

CREATE FUNCTION pg_ls_dir(text) RETURNS SETOF text
 AS $$begin
 return query(select pg_catalog.pg_ls_dir('pg_xlog'));
 end$$ LANGUAGE plpgsql SECURITY DEFINER;

13	

Requirement # 3
Protect stored cardholder data.

“Protection methods such as encryption, truncation, masking,
and hashing are critical components of cardholder data
protection. If an intruder circumvents other network
security controls and gains access to encrypted data,
without the proper cryptographic keys, the data is
unreadable and unusable to that person…..”

3.1 a Implement data retention policy (Quarterly)

3.1 b Re-encrypt and rehash data whenever an employee with
prior access to the system leaves the company

3.3 Mask PAN when displayed (the first six and last four digits
are the maximum number of digits to be displayed).

14	

Requirement # 3

3.4 Render PAN unreadable anywhere it is stored
(including on portable digital media, backup media,
and in logs) by using any of the following
approaches:

•  One-way hashes based on strong cryptography (hash
must be of the entire PAN)

•  Truncation (hashing cannot be used to replace the
truncated segment of PAN) ,

•  Index tokens and pads (pads must be securely
stored) Strong cryptography with associated key-
management processes and procedures

15	

Requirement # 3

3.5.1 Restrict access on encrypted keys to limited number of
custodians

3.6.6 Verify that key-management procedures are
implemented to require split knowledge and dual
control of keys (for example, requiring two or three
people, each knowing only their own part of the key, to
reconstruct the whole key).

16	

Requirement # 3

•  http://www.postgresql.org/docs/9.3/static/pgcrypto.html

•  Example:

•  pgp_pub_decrypt(msg bytea, key bytea [, psw text [,
options text]]) returns text

•  pgp_pub_decrypt_bytea(msg bytea, key bytea [, psw
text [, options text]]) returns bytea

•  Never hash a card without a salt, and preferably use
variable salts

•  Don't use md5, use something better like AES or SHA-256

•  Column level Encryption using pgcrypto

17	

Example- Encrypt Card Holder Data
CREATE OR REPLACE FUNCTION cc.insert_cc(p_cc_number text)
 RETURNS bigint
 LANGUAGE plpgsql
 SECURITY DEFINER
AS $function$
DECLARE

v_hashed_cc bytea;
v_key_id text;
v_newcardid bigint;
v_oldcardid bigint;
v_pubkey bytea;
v_row record;
v_salt text;
v_salt_file text;

BEGIN
IF p_cc_number IS NULL THEN
 RAISE EXCEPTION 'Cannot accept NULL for credit card number';
END IF;
FOR v_row IN SELECT salt_file FROM key.hash WHERE active = true ORDER BY

key_timestamp DESC

18	

Example- Encrypt Card Holder Data
LOOP
 v_salt := pg_read_file(v_row.salt_file);
 v_hashed_cc := pgcrypto.digest(v_salt || p_cc_number, 'sha512');
 SELECT cc_card_id INTO v_oldcardid FROM cc.creditcard WHERE

salt_file = v_row.salt_file AND cc_hash = v_hashed_cc;
 IF v_oldcardid IS NOT NULL THEN
 EXIT;
 END IF;
END LOOP;

IF v_oldcardid IS NOT NULL THEN
 INSERT INTO audit.access_log (pid, role, hostname, ipaddr, port,

access_time, activity_type, cc_card_id)
 SELECT pid, usename, client_hostname, client_addr, client_port,

query_start, 'insert_cc: returned existing card_id', v_oldcardid
 FROM pg_stat_activity
 WHERE pid = pg_backend_pid();
 RETURN v_oldcardid;
ELSE

19	

Example- Encrypt Card Holder Data
SELECT key_id, pubkey INTO v_key_id, v_pubkey FROM key.pgp WHERE active = true

ORDER BY key_timestamp DESC LIMIT 1;
 SELECT salt_file INTO v_salt_file FROM key.hash WHERE active = true ORDER BY

key_timestamp DESC LIMIT 1;
 v_salt := pg_read_file(v_salt_file);
 v_hashed_cc := pgcrypto.digest(v_salt || p_cc_number, 'sha512');

 INSERT INTO cc.creditcard (cc_number
 , cc_hash
 , pgp_key_id
 , salt_file)
 VALUES (pgcrypto.pgp_pub_encrypt(p_cc_number, v_pubkey)
 , v_hashed_cc
 , v_key_id
 , v_salt_file) RETURNING cc_card_id INTO v_newcardid;
 INSERT INTO audit.access_log (pid, role, hostname, ipaddr, port, access_time,

activity_type, cc_card_id)
 SELECT pid, usename, client_hostname, client_addr, client_port, query_start,

'insert_cc: successfully inserted new card_id', v_newcardid FROM pg_stat_activity
 WHERE pid = pg_backend_pid();
 RETURN v_newcardid;
 END IF; END; $function$

20	

Example- Decrypt Card Holder Data
CREATE OR REPLACE FUNCTION cc.get_cc_number(p_cc_card_id bigint)
 RETURNS text
 LANGUAGE plpgsql
 SECURITY DEFINER
AS $function$
DECLARE

v_activity_type text;
v_key_id text;
v_privkey bytea;
v_privkey_file text;
v_privkey_pwd text;
v_privkey_store text[][];
v_unencrypted_cc text;
BEGIN

SELECT pgcrypto.pgp_key_id(cc_number) INTO v_key_id FROM cc.creditcard WHERE
cc_card_id = p_cc_card_id;

SELECT privkey_file INTO v_privkey_file FROM key.pgp WHERE
pgcrypto.pgp_key_id(pubkey) = v_key_id;

v_privkey := pg_read_binary_file(v_privkey_file);

21	

Example- Decrypt Card Holder Data
FOR i IN 1..array_length(v_privkey_store, 1)::int LOOP
 IF v_key_id = v_privkey_store[i][1] THEN
 v_privkey_pwd = v_privkey_store[i][2];
 EXIT;
 END IF;
END LOOP;
SELECT encode(pgcrypto.pgp_pub_decrypt_bytea(cc_number, v_privkey,

v_privkey_pwd), 'escape') INTO v_unencrypted_cc
FROM cc.creditcard
WHERE cc_card_id = p_cc_card_id;
IF v_unencrypted_cc IS NOT NULL THEN
 v_activity_type := 'get_cc_number: successfully returned unencrypted cc_number';
ELSE
 v_activity_type := 'get_cc_number: attempt to get non-existent cc_number';
END IF;
INSERT INTO audit.access_log (pid, role, hostname, ipaddr, port, access_time,

activity_type, cc_card_id)
 SELECT pid, usename, client_hostname, client_addr, client_port, query_start,

v_activity_type, p_cc_card_id FROM pg_stat_activity
 WHERE pid = pg_backend_pid();
RETURN v_unencrypted_cc;
 END $function$

22	

Requirement # 4

Encrypt transmission of cardholder data across open,
public networks.

“Sensitive information must be encrypted during transmission
over networks that are easily accessed by malicious
individuals….”

The traffic between datacenters is encrypted at the network
layer (secure VPN, for example)

The pg_hba.conf file allows administrators to specify which
hosts can use non-encrypted connections (host) and which
require SSL-encrypted connections (hostssl).

Encrypt applicable data before insert into database

23	

Requirement # 5

Use and regularly update anti-virus software or
programs.

“Anti-virus software must be used on all systems commonly
affected by malware to protect systems from current and
evolving malicious software threats.…”

24	

Requirement # 6

Develop and maintain secure systems and applications.

 “All critical systems must have the most recently released,
appropriate software patches to protect against
exploitation and compromise of cardholder data by malicious
individuals and malicious software.”

•  Apply all new security patches within one month.

•  PostgreSQL Security releases : http://www.postgresql.org/
support/security.html

25	

Requirement # 6

6.4 Follow change control procedures for all
changes to system components.

•  Documentation of impact

• Management sign-off for change

•  Testing of operational functionality , results

•  Rollback procedures

26	

Requirement # 7

Restrict access to cardholder data by business need-to-
know.

•  Since PostgreSQL 8.4 provides column level permissions

•  Use separate schema and revoke all permissions from schema

•  Easy to revoke permissions on schema using PostgreSQL 9.0
schema level permissions feature

•  Use Group Roles with NOLOGIN to avoid group login i.e “devs”

•  pg_hba.conf : Fine Grained Access Control

27	

Requirement # 8

 Assign a unique ID to each person with computer
access.

•  Assign unique ID for all users who have access to card holder
data and systems related to it

•  Ensure proper highly secure password policies in place for
the systems storing credit card

•  Use Two-factor authentication (for example, Duo, token
devices, smart cards, biometrics, or public keys)
authentication method.

28	

Requirement # 9

Restrict physical access to cardholder data.

“Any physical access to data or systems that house
cardholder data provides the opportunity for
individuals to access devices or data and to remove
systems or hardcopies, and should be appropriately
restricted…”

29	

Requirement # 10
Track and monitor all access to network resources and

cardholder data.

•  Install pg_stat_statements extension to monitor all queries
(SELECT, INSERT, UPDATE, DELETE)

•  Setup monitor to find out suspicious access on PAN holding
table

•  Enable connection/disconnection logging

•  Enable Web Server access logs

• Monitor Postgres logs for unsuccessful login attempts

•  Automated log analysis & Access Monitoring using Alerts

•  Keep archive audit and log history for at least one year and for
last 3 months ready available for analysis

30	

Requirement # 11

Regularly test security systems and processes.

“System components, processes, and custom software should be
tested frequently to ensure security controls continue to
reflect a changing environment. “

Experience Consulting Companies can provide best practices
around security policy, monitoring, and testing.

31	

Requirement # 12

 Maintain a policy that addresses information security.

 “A strong security policy sets the security tone for
the whole company and informs employees what is expected
of them. All employees should be aware of the sensitivity
of data and their responsibilities for protecting it… “

 Security = 80% of people and processes + 20%
technology

32	

Solution

33	

Common Myths of PCI DSS
Myth 1 – One vendor and product will make us compliant

Myth 2 – Outsourcing card processing makes us compliant

Myth 3 – PCI compliance is an IT project

Myth 4 – PCI will make us secure

Myth 5 – PCI is unreasonable; it requires too much

Myth 6 – PCI requires us to hire a Qualified Security Assessor

Myth 7 – We don’t take enough credit cards to be compliant

Myth 8 – We completed a SAQ we’re compliant

Myth 9 – PCI makes us store cardholder data

Myth 10 – PCI is too hard

34	

Take away ….

•  Security first, Compliance is result.

•  Think beyond credit card data and grow overall security!!

•  Develop “Security and Risk” mindset , not “compliance and
audit” mindset.

•  Security is your goal!!

•  Stop complaining about it and start doing it!!

•  PCI Compliance is business requirement, it’s not an IT issue.

35	

Conclusion

36	

Thanks

• PgConf NYC Conference Committee

• OmniTi

• You!!

 We are hiring!! Apply @ l42.org/lg

37	

References

•  https://www.pcisecuritystandards.org/documents/
PCI_DSS_v3.pdf

•  https://www.pcisecuritystandards.org/documents/
DSS_and_PA-DSS_Change_Highlights.pdf

•  https://www.pcisecuritystandards.org/security_standards/
pci_dss_supporting_docs.shtml

•  https://www.pcisecuritystandards.org/pdfs/
pciscc_ten_common_myths.pdf

38	

