The process architecture of Synch Rep

Primary
T T T ety I
1 backends : 1 background processes
| |
|
I I .) .
psgl [libpq | postgres] : 1| bgwriter [walwriter]
SQL | : = :
, : | |stats collector [logger]
Application| JDBC postgres] I ’:
| . archiver
__________ 1 R \
o 1, §
connect i [autovacuum [autovacuum
¢ ¢ : launcher) worker
ostmaster S
p I o o o o o o e e e e o e e e e o
i special backend :
|
walsender] :
} A |
\ WAL
Standby
connect
___________________ -
1 backgrpund processes
A\ 4

walreceiver [bgwriter]

[postmaster } """""" >

|

I \

:[stats collector [archiver]
I J

I

I

(1) The flow of WAL before starting replication

archive

Primary
[postgres]
\
wal buffers pg_xlog
[walsender] [jver
Standby

[walreceiver]

[archiver]

pg_xlog

[startup]

[pg_standby]

WAL archived
by primary

—
flow of WAL archived by primary

—
flow of WAL shipped from primary

(2) The flow of WAL just after replication starts

Primary
[ug\‘]
If archive_mode = all, the
wal buffer i hive xI
al bu i pg_xlog files also during replication.
r walsender] [archiver] archive
WAL archived
by primary
Standby - -)
[walreceiver] [archiver >
\, /

] »| WAL shipped
/ from primary

—l

[startup [pg_standby] —

flow of WAL archived by primary

flow of WAL shipped from primary

(3) The flow of WAL after recovery has reached to replication starting position

Primary
[ug\‘]
Wal bUfferS pg_xlog
r walsender] [archiver] archive
WAL archived
by primary
Standby) -
[walreceiver] [archiver/J »| WAL shipped
a from primary
pg_xlog
—
flow of WAL archived by primary
startup [pg_standby] —
flow of WAL shipped from primary

(4) The flow of WAL after replication ended

Primary
[ug\‘]
Wal bUfferS pg_xlog
[walsender] [iver archive
\ WAL archived
by primary
Standby -
[walreceiver] [archiver] WAL shipped
from primary
pg_xlog
—
flow of WAL archived by primary
[startup] [pg_standby] —
flow of WAL shipped from primary

