
PostgreSQL 8.5devel Documentation

Prev Fast
Backward Chapter 9. Functions and Operators

Fast
Forward

Next

9.24. System Administration Functions
The functions shown in Table 9-56 assist in making on-line backups. Use of the first
three functions is restricted to superusers.

Table 9-56. Backup Control Functions

Name
Return
Type

Description

pg_start_backup(label
text [, fast boolean])

text Prepare for performing on-line backup

pg_stop_backup() text Finish performing on-line backup

pg_switch_xlog() text Force switch to a new transaction log file

pg_current_xlog_location
()

text Get current transaction log write location

pg_current_xlog_insert_l
ocation()

text Get current transaction log insert location

pg_xlogfile_name_offset(
location text)

text,
integer

Convert transaction log location string to
file name and decimal byte offset within
file

pg_xlogfile_name(locatio
n text)

text Convert transaction log location string to
file name

pg_start_backup accepts an arbitrary user-defined label for the backup. (Typically
this would be the name under which the backup dump file will be stored.) The
function writes a backup label file (backup_label) into the database cluster's data
directory, performs a checkpoint, and then returns the backup's starting transaction
log location as text. The user can ignore this result value, but it is provided in case
it is useful.

postgres=# select pg_start_backup('label_goes_here');
 pg_start_backup

 0/D4445B8
(1 row)

file:///home/sriggs/pg/pg_CVSHEAD/pgsql/doc/src/sgml/html/functions-info.html
file:///home/sriggs/pg/pg_CVSHEAD/pgsql/doc/src/sgml/html/functions-admin.html#FUNCTIONS-ADMIN-BACKUP-TABLE
file:///home/sriggs/pg/pg_CVSHEAD/pgsql/doc/src/sgml/html/functions-trigger.html
file:///home/sriggs/pg/pg_CVSHEAD/pgsql/doc/src/sgml/html/functions.html
file:///home/sriggs/pg/pg_CVSHEAD/pgsql/doc/src/sgml/html/functions.html
file:///home/sriggs/pg/pg_CVSHEAD/pgsql/doc/src/sgml/html/functions.html
file:///home/sriggs/pg/pg_CVSHEAD/pgsql/doc/src/sgml/html/functions.html

There is an optional boolean second parameter. If true, it specifies executing
pg_start_backup as quickly as possible. This forces an immediate checkpoint
which will cause a spike in I/O operations, slowing any concurrently executing
queries.

pg_stop_backup removes the label file created by pg_start_backup, and creates a
backup history file in the transaction log archive area. The history file includes the
label given to pg_start_backup, the starting and ending transaction log locations
for the backup, and the starting and ending times of the backup. The return value
is the backup's ending transaction log location (which again can be ignored). After
recording the ending location, the current transaction log insertion point is
automatically advanced to the next transaction log file, so that the ending
transaction log file can be archived immediately to complete the backup.

pg_switch_xlog moves to the next transaction log file, allowing the current file to
be archived (assuming you are using continuous archiving). The return value is the
ending transaction log location + 1 within the just-completed transaction log file. If
there has been no transaction log activity since the last transaction log switch,
pg_switch_xlog does nothing and returns the start location of the transaction log
file currently in use.

pg_current_xlog_location displays the current transaction log write location in
the same format used by the above functions. Similarly,
pg_current_xlog_insert_location displays the current transaction log insertion
point. The insertion point is the "logical" end of the transaction log at any instant,
while the write location is the end of what has actually been written out from the
server's internal buffers. The write location is the end of what can be examined
from outside the server, and is usually what you want if you are interested in
archiving partially-complete transaction log files. The insertion point is made
available primarily for server debugging purposes. These are both read-only
operations and do not require superuser permissions.

You can use pg_xlogfile_name_offset to extract the corresponding transaction
log file name and byte offset from the results of any of the above functions. For
example:

postgres=# SELECT * FROM pg_xlogfile_name_offset(pg_stop_backup());
 file_name | file_offset
--------------------------+-------------
 00000001000000000000000D | 4039624
(1 row)

Similarly, pg_xlogfile_name extracts just the transaction log file name. When the
given transaction log location is exactly at a transaction log file boundary, both
these functions return the name of the preceding transaction log file. This is usually
the desired behavior for managing transaction log archiving behavior, since the
preceding file is the last one that currently needs to be archived.

For details about proper usage of these functions, see Section 24.3.

The functions shown in Table 9-57 provide information about the current status of
Hot Standby. These functions may be executed during both recovery and in normal
running.

file:///home/sriggs/pg/pg_CVSHEAD/pgsql/doc/src/sgml/html/functions-admin.html#FUNCTIONS-RECOVERY-INFO-TABLE
file:///home/sriggs/pg/pg_CVSHEAD/pgsql/doc/src/sgml/html/continuous-archiving.html

Table 9-57. Recovery Information Functions

Name
Return
Type

Description

pg_is_in_rec
overy()

bool
True if recovery is still in progress. If you wish to know
more detailed status information use
pg_current_recovery_target.

pg_last_reco
vered_xid()

integer

Returns the transaction id (32-bit) of the last
completed transaction in the current recovery. Later
numbered transaction ids may already have
completed, so the value could in some cases be lower
than the last time this function executed. If recovery
has completed then the return value will remain static
at the value of the last transaction applied during that
recovery. When the server has been started normally
without a recovery then the return value will be
InvalidXid (zero).

pg_last_reco
vered_xact_t
imestamp()

timestamp
with time
zone

Returns the original completion timestamp with
timezone of the last recovered transaction. If recovery
is still in progress this will increase monotonically,
while if recovery has completed then this value will
remain static at the value of the last transaction
applied during that recovery. When the server has
been started normally without a recovery then the
return value will be a default value.

pg_last_reco
vered_xlog_l
ocation()

text

Returns the transaction log location of the last
recovered transaction in the current recovery. This
value is updated only when transaction completion
records (commit or abort) arrive, so WAL records
beyond this value may also have been recovered. If
recovery is still in progress this will increase
monotonically. If recovery has completed then this
value will remain static at the value of the last WAL
record applied during that recovery. When the server
has been started normally without a recovery then the
return value will be InvalidXLogRecPtr (0/0).

The functions shown in Table 9-58 can be used to control archive recovery when
executed in Hot Standby mode. These functions can only be executed during
recovery. Their use is restricted to superusers only.

Table 9-58. Recovery Control Functions

Name
Return
Type

Description

pg_recovery_paus void Pause recovery processing, unconditionally.

file:///home/sriggs/pg/pg_CVSHEAD/pgsql/doc/src/sgml/html/functions-admin.html#FUNCTIONS-RECOVERY-CONTROL-TABLE

Name
Return
Type

Description

e()

pg_recovery_cont
inue()

void If recovery is paused, continue processing.

pg_recovery_stop
()

void End recovery and begin normal processing.

pg_recovery_paus
e_xid(xid
integer)

void Continue recovery until specified xid completes, if it is
ever seen, then pause recovery.

pg_recovery_paus
e_timestamp(endt
ime timestamp)

void
Continue recovery until a transaction with specified
timestamp completes, if one is ever seen, then pause
recovery.

pg_recovery_paus
e_location(locat
ion text)

void

Continue recovery until a transaction with an LSN
higher than the specified WAL location completes, if
one is ever seen, then pause recovery. The location is
specified as a string of the same form output by
pg_current_xlog_location(), e.g.
pg_recovery_pause_location('0/D4445B8')

pg_recovery_adva
nce(num_records
integer)

void Advance recovery specified number of records then
pause.

pg_current_recov
ery_target()

text
Returns details of the server's current recovery
target, if any. If recovery is paused then the return
value is 'Recovery paused'.

pg_recovery_max_
standby_delay(de
lay integer)

void Set the max_standby_delay for recovery conflict
processing (in seconds).

pg_recovery_pause and pg_recovery_continue allow a superuser to control the
progress of recovery on the database server. Once recovery is paused it will stay
paused until you release it, even if the server falls further behind than
max_standby_delay. Recovery can be paused, continued, paused, continued, etc.
as many times as required. If the superuser wishes recovery to complete and
normal processing mode to start, execute pg_recovery_stop.

The paused state provides a stable, unchanging database that can be queried to
determine how far forwards recovery has progressed. Recovery can never go
backwards because previous data may have been overwritten, so some care must
be taken to recover to a specific point. pg_recovery_pause_xid and

pg_recovery_pause_timestamp, allow the specification of a trial recovery target,
similarly to Recovery Settings. Recovery will then progress to the specified point
and then pause. This allows the superuser to assess whether this is a desirable
stopping point for recovery, or a good place to copy data that is known to be
deleted later in the recovery. pg_recovery_pause_location can also be used to
pause recovery after a transaction completion record arrives that has a higher LSN.

pg_recovery_advance allows recovery to progress record by record, for very
careful analysis or debugging. Step size can be 1 or more records. If recovery is not
yet paused then pg_recovery_advance will process the specified number of records
then pause. If recovery is already paused, recovery will continue for another N
records before pausing again.

If you pause recovery while the server is waiting for a WAL file when operating in
standby mode it will have apparently no effect until the file arrives. Once the server
begins processing WAL records again it will notice the pause request and will act
upon it. This is not a bug.

You can see if recovery is paused by checking the process title, or by using
pg_current_recovery_target.

Prev Home Next

System Information
Functions

Up Trigger Functions

file:///home/sriggs/pg/pg_CVSHEAD/pgsql/doc/src/sgml/html/functions.html
file:///home/sriggs/pg/pg_CVSHEAD/pgsql/doc/src/sgml/html/functions-trigger.html
file:///home/sriggs/pg/pg_CVSHEAD/pgsql/doc/src/sgml/html/index.html
file:///home/sriggs/pg/pg_CVSHEAD/pgsql/doc/src/sgml/html/functions-info.html
file:///home/sriggs/pg/pg_CVSHEAD/pgsql/doc/src/sgml/html/continuous-archiving.html#RECOVERY-CONFIG-SETTINGS

	9.24. System Administration Functions

