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1 Platform

• 4 Xeon x7650 (8 core) processors

– with hyperthreading OS see 64 processors

• 128Gb RAM

• PostgreSQL 9.0

– recently upgaded from 8.3

• Hot standby handles stats and long running reports

• Main Enlighten database is 88Gb

• Long Distance call database is 47Gb

• load average usually around 7

2 Application

• OpenACS / AOLServer

• 14 Web servers load balanced

• no state or session affinity

• connection pools
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– max lifetime is 2 hours

• also has scheduling server

3 Billing System Concepts

• Development

– physical location, a collection of properties

* subdivision

* apartment complex

* condo building

* trailer park

• Billing Cycle

– when a development’s billing period starts

• Bill Run

– instance of a bill cycle for a development for a specific month

• Invoice

– bill for a single subscriber / provider combination in a bill run

4 Bill Run Life Cycle

• Data Quality

– must pass data quality checks before can enter draft stage

• Draft state

– where rating is performed

• Pro Forma state

– rating is frozen and reviewed

– if re-rating is required,return to Draft

• Final State

– point of no return

– items are marked as invoiced

– accounting system is updated

– printable invoice generation is triggered

– data is archived
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5 Rating Queue

• items placed on queue by users

• items placed on queue by scheduler

– nightly, all bill runs in Draft state

• queue processor run by scheduler

6 Rating

• done by calling a database function

• wipe out previous invoice data for bill run

• fetch subscribed services and prices from catalog

• create line items for subscribed services

• fetch one-off charges (e.g. PPV)

• create line items for one-off charges

• rate long distance calls

• rate third party items

• rate taxes and surcharges

• fetch balances, payments, adjustments

• calculate invoice totals

7 Long Distance Calls

• LD call data is large and lives in another database

• so rating engine for LD lives there

• requires a small amount of data from services database

• 17 tables are replicated to LD database

– about 1.2 Gb

– uses londiste

• rating done via dblink() call
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8 Taxes

• tax data obtained from commercial vendor

• fixed length fields and highly denormalized

• preprocessed into CSVs and loaded into db tables, usually monthly

• catalog items are marked with tax categories

• stored procedure rates line items according to algorithms specified by vendor

• processing is quite complex

– some items need to be aggregated, others not

– different tiers of taxes

– taxes on taxes

• third party vendor’s tax tables are not complete

• Surcharges

• tax rating has been a major performance bottleneck

– now create a cache of tax rates per bill run

9 Archiving

• Final action taken on any bill run

• data spooled as CSV files

• collected and loaded into secure database

10 Printing Preparation

• Actual printing is done by third party print processor

• Some invoices are not printed

• Data is spooled as XML, one file per invoice

– xml constructed using Postgres XML primitives

– no hand crafted XML tags

11 Invoice XML Generation example

create or replace function cb_ob_invoice_xml_vod_details
(invoice_number int)
returns xml
language sql as

$$
select xmlagg (

xmlelement(name "DETAIL", NULL,
xmlconcat(

xmlelement(name "Date_Time", NULL, date_time),
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xmlelement(name "Charge_Type", NULL, charge_type),
xmlelement(name "Title", NULL, title),
xmlelement(name "Amount", NULL, amount),
xmlelement(name "Tax", NULL, other_tax),
xmlelement(name "Total", NULL, total)

)
)

)
from cb_ob_bill_extract_vod_usage($1)

$$;

12 Print Processing

• spool processed nightly

• generation in parallel on separate 8 processor (virtual) server

• Apache fop

• hand crafted stylesheet

• currently adding major appearance enhancements, and different styles per provider

• elapsed time for generation is slightly over 0.5s per invoice

• when generated, zipped and shipped to print processor

• also loaded in special purpose database

13 Relation to Accounting System

• Enlighten does not keep track of payments, balances, etc

• These live in a SQLServer database of great obscurity

– table names like "rm00103"
– communicate using PL/PerlU + DBD::Sybase/FreeTDS

• Enlighten fetches this data from SQLServer daily

– required for rating

• daily push of newly final bill runs to SQLServer:

– push new customers
– push new line items
– create mirror document for invoice in SQLServer
– push each line item in each invoice

14 Performance

• currently generate one invoice at a time

• can only process one bill run at a time

• steps are timed to identify bottlenecks

• lots of room for performance gains

• first goal: run rating in parallel
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15 Rating Performance Statistics

Data from 2011-09-12

cap=$ select count(*) as invoices,
avg(rate_time)

from (select invoice_pk,
max(end_time) - min(start_time) as rate_time

from public.cb_ob_rating_timings
group by invoice_pk) q;

invoices | avg
----------+-----------------

189033 | 00:00:00.350561

16 Scalability

• parallel queue should process all we need any time soon

• longer term:

– processing items in bulk within a bill run

– shard database and rate across multiple machines

17 Development

• originally developed mainly by 4 people

• 4 months from initial design to first invoice

• has been relatively bug free

• being on 9.0 makes thing easier than 8.3

– rewriting queries using Common Table Expressions

– auto-explain with query text

18 Conclusion

• project has been an unqualified success

• PostgreSQL handles the application very well

• major factor in success: process data in the database

• If we did it again I’d probably do most of it the same way
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19 The End
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