
A PostgreSQL Based Billing System
for a Telco

i

A PostgreSQL Based Billing System for a Telco

A PostgreSQL Based Billing System
for a Telco

ii

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

A PostgreSQL Based Billing System
for a Telco

iii

Contents

1 Platform 1

2 Application 1

3 Billing System Concepts 2

4 Bill Run Life Cycle 2

5 Rating Queue 3

6 Rating 3

7 Long Distance Calls 3

8 Taxes 4

9 Archiving 4

10 Printing Preparation 4

11 Invoice XML Generation example 4

12 Print Processing 5

13 Relation to Accounting System 5

14 Performance 5

15 Rating Performance Statistics 6

16 Scalability 6

17 Development 6

18 Conclusion 6

19 The End 7

A PostgreSQL Based Billing System
for a Telco

1 / 7

1 Platform

• 4 Xeon x7650 (8 core) processors

– with hyperthreading OS see 64 processors

• 128Gb RAM

• PostgreSQL 9.0

– recently upgaded from 8.3

• Hot standby handles stats and long running reports

• Main Enlighten database is 88Gb

• Long Distance call database is 47Gb

• load average usually around 7

2 Application

• OpenACS / AOLServer

• 14 Web servers load balanced

• no state or session affinity

• connection pools

A PostgreSQL Based Billing System
for a Telco

2 / 7

– max lifetime is 2 hours

• also has scheduling server

3 Billing System Concepts

• Development

– physical location, a collection of properties

* subdivision

* apartment complex

* condo building

* trailer park

• Billing Cycle

– when a development’s billing period starts

• Bill Run

– instance of a bill cycle for a development for a specific month

• Invoice

– bill for a single subscriber / provider combination in a bill run

4 Bill Run Life Cycle

• Data Quality

– must pass data quality checks before can enter draft stage

• Draft state

– where rating is performed

• Pro Forma state

– rating is frozen and reviewed

– if re-rating is required,return to Draft

• Final State

– point of no return

– items are marked as invoiced

– accounting system is updated

– printable invoice generation is triggered

– data is archived

A PostgreSQL Based Billing System
for a Telco

3 / 7

5 Rating Queue

• items placed on queue by users

• items placed on queue by scheduler

– nightly, all bill runs in Draft state

• queue processor run by scheduler

6 Rating

• done by calling a database function

• wipe out previous invoice data for bill run

• fetch subscribed services and prices from catalog

• create line items for subscribed services

• fetch one-off charges (e.g. PPV)

• create line items for one-off charges

• rate long distance calls

• rate third party items

• rate taxes and surcharges

• fetch balances, payments, adjustments

• calculate invoice totals

7 Long Distance Calls

• LD call data is large and lives in another database

• so rating engine for LD lives there

• requires a small amount of data from services database

• 17 tables are replicated to LD database

– about 1.2 Gb

– uses londiste

• rating done via dblink() call

A PostgreSQL Based Billing System
for a Telco

4 / 7

8 Taxes

• tax data obtained from commercial vendor

• fixed length fields and highly denormalized

• preprocessed into CSVs and loaded into db tables, usually monthly

• catalog items are marked with tax categories

• stored procedure rates line items according to algorithms specified by vendor

• processing is quite complex

– some items need to be aggregated, others not

– different tiers of taxes

– taxes on taxes

• third party vendor’s tax tables are not complete

• Surcharges

• tax rating has been a major performance bottleneck

– now create a cache of tax rates per bill run

9 Archiving

• Final action taken on any bill run

• data spooled as CSV files

• collected and loaded into secure database

10 Printing Preparation

• Actual printing is done by third party print processor

• Some invoices are not printed

• Data is spooled as XML, one file per invoice

– xml constructed using Postgres XML primitives

– no hand crafted XML tags

11 Invoice XML Generation example

create or replace function cb_ob_invoice_xml_vod_details
(invoice_number int)
returns xml
language sql as

$$
select xmlagg (

xmlelement(name "DETAIL", NULL,
xmlconcat(

xmlelement(name "Date_Time", NULL, date_time),

A PostgreSQL Based Billing System
for a Telco

5 / 7

xmlelement(name "Charge_Type", NULL, charge_type),
xmlelement(name "Title", NULL, title),
xmlelement(name "Amount", NULL, amount),
xmlelement(name "Tax", NULL, other_tax),
xmlelement(name "Total", NULL, total)

)
)

)
from cb_ob_bill_extract_vod_usage($1)

$$;

12 Print Processing

• spool processed nightly

• generation in parallel on separate 8 processor (virtual) server

• Apache fop

• hand crafted stylesheet

• currently adding major appearance enhancements, and different styles per provider

• elapsed time for generation is slightly over 0.5s per invoice

• when generated, zipped and shipped to print processor

• also loaded in special purpose database

13 Relation to Accounting System

• Enlighten does not keep track of payments, balances, etc

• These live in a SQLServer database of great obscurity

– table names like "rm00103"
– communicate using PL/PerlU + DBD::Sybase/FreeTDS

• Enlighten fetches this data from SQLServer daily

– required for rating

• daily push of newly final bill runs to SQLServer:

– push new customers
– push new line items
– create mirror document for invoice in SQLServer
– push each line item in each invoice

14 Performance

• currently generate one invoice at a time

• can only process one bill run at a time

• steps are timed to identify bottlenecks

• lots of room for performance gains

• first goal: run rating in parallel

A PostgreSQL Based Billing System
for a Telco

6 / 7

15 Rating Performance Statistics

Data from 2011-09-12

cap=$ select count(*) as invoices,
avg(rate_time)

from (select invoice_pk,
max(end_time) - min(start_time) as rate_time

from public.cb_ob_rating_timings
group by invoice_pk) q;

invoices | avg
----------+-----------------

189033 | 00:00:00.350561

16 Scalability

• parallel queue should process all we need any time soon

• longer term:

– processing items in bulk within a bill run

– shard database and rate across multiple machines

17 Development

• originally developed mainly by 4 people

• 4 months from initial design to first invoice

• has been relatively bug free

• being on 9.0 makes thing easier than 8.3

– rewriting queries using Common Table Expressions

– auto-explain with query text

18 Conclusion

• project has been an unqualified success

• PostgreSQL handles the application very well

• major factor in success: process data in the database

• If we did it again I’d probably do most of it the same way

A PostgreSQL Based Billing System
for a Telco

7 / 7

19 The End

	Platform
	Application
	Billing System Concepts
	Bill Run Life Cycle
	Rating Queue
	Rating
	Long Distance Calls
	Taxes
	Archiving
	Printing Preparation
	Invoice XML Generation example
	Print Processing
	Relation to Accounting System
	Performance
	Rating Performance Statistics
	Scalability
	Development
	Conclusion
	The End

