
PostgreSQL 8.5devel Documentation

Prev Fast
Backward Chapter 24. Backup and Restore

Fast
Forward

Next

24.5. Hot Standby
Hot Standby is the term used to describe the ability to connect to the server and
run queries while the server is in archive recovery. This is useful for both log
shipping replication and for restoring a backup to an exact state with great
precision. The term Hot Standby also refers to the ability of the server to move
from recovery through to normal running while users continue running queries
and/or continue their connections.

Running queries in recovery is in many ways the same as normal running though
there are a large number of usage and administrative points to note.

24.5.1. User's Overview

Users can connect to the database while the server is in recovery and perform
read-only queries. Read-only access to catalogs and views will also occur as
normal.

The data on the standby takes some time to arrive from the primary server so
there will be a measurable delay between primary and standby. Queries executed
on the standby will be correct as of the data that had been recovered at the start of
the query (or start of first statement, in the case of Serializable transactions).
Running the same query nearly simultaneously on both primary and standby might
therefore return differing results. We say that data on the standby is eventually
consistent with the primary.

When a connection is made in recovery, the parameter
default_transaction_read_only will be forced to be true, whatever its setting in
postgresql.conf. As a result, all transactions started during this time will be limited
to read-only actions only. In all other ways, connected sessions will appear identical
to sessions initiated during normal processing mode. There are no special
commands required to initiate a connection at this time, so all interfaces will work
normally without change.

Read-only here means "no writes to the permanent database tables". So there are
no problems with queries that make use of temporary sort and work files will be
used. Temporary tables cannot be created and therefore cannot be used at all in
recovery mode.

The following actions are allowed

• Query access - SELECT, COPY TO including views and SELECT RULEs

• Cursor commands - DECLARE, FETCH, CLOSE,

file:///home/sriggs/pg/pg_CVSHEAD/pgsql/doc/src/sgml/html/warm-standby.html
file:///home/sriggs/pg/pg_CVSHEAD/pgsql/doc/src/sgml/html/migration.html
file:///home/sriggs/pg/pg_CVSHEAD/pgsql/doc/src/sgml/html/backup.html
file:///home/sriggs/pg/pg_CVSHEAD/pgsql/doc/src/sgml/html/backup.html
file:///home/sriggs/pg/pg_CVSHEAD/pgsql/doc/src/sgml/html/backup.html
file:///home/sriggs/pg/pg_CVSHEAD/pgsql/doc/src/sgml/html/backup.html

• Parameters - SHOW, SET, RESET

• Transaction management commands

• BEGIN, END, ABORT, START TRANSACTION

• SAVEPOINT, RELEASE, ROLLBACK TO SAVEPOINT

• EXCEPTION blocks and other internal subtransactions

• LOCK, with restrictions, see later

• Plans and resources - PREPARE, EXECUTE, DEALLOCATE, DISCARD

• Plugins and extensions - LOAD

These actions will produce error messages

• DML - Insert, Update, Delete, COPY FROM, Truncate which all write data. Any
RULE which generates DML will throw error messages as a result. Note that
there is no action possible that can result in a trigger being executed.

• DDL - Create, Drop, Alter, Comment (even for temporary tables because
currently these cause writes to catalog tables)

• SELECT ... FOR SHARE | UPDATE which cause row locks to be written

• Transaction management commands that explicitly set non-read only state

• BEGIN READ WRITE, START TRANSACTION READ WRITE

• SET TRANSACTION READ WRITE, SET SESSION CHARACTERISTICS AS
TRANSACTION READ WRITE

• SET transaction_read_only = off; or SET default_transaction_read_only
= off;

• Two-phase commit commands - PREPARE TRANSACTION, COMMIT
PREPARED, ROLLBACK PREPARED because even read-only transactions need
to write WAL in the prepare phase (the first phase of two phase commit).

• sequence update - nextval()

• LISTEN, UNLISTEN, NOTIFY since they currently write to system tables

Note that current behaviour of read only transactions when not in recovery is to
allow the last two actions, so there is a small and subtle difference in behaviour
between standby read-only transactions and read only transactions during normal
running. It is possible that the restrictions on LISTEN, UNLISTEN, NOTIFY and
temporary tables may be lifted in a future release, if their internal implementation
is altered to make this possible.

If failover or switchover occurs the database will switch to normal processing mode.
Sessions will remain connected while the server changes mode. Current

transactions will continue, though will remain read-only. After this, it will be
possible to initiate read-write transactions, though users must *manually* reset
their default_transaction_read_only setting first, if they want that behaviour.

Users will be able to tell whether their session is read-only by issuing SHOW
default_transaction_read_only. In addition a set of functions Table 9-57 allow users
to access information about Hot Standby. These allow you to write functions that
are aware of the current state of the database. These can be used to monitor the
progress of recovery, or to allow you to write complex programs that restore the
database to particular states.

In recovery, transactions will not be permitted to take any lock higher other than
AccessShareLock or AccessExclusiveLock. In addition, transactions may never
assign a TransactionId and may never write WAL. The LOCK TABLE command by
default applies an AccessExclusiveLock. Any LOCK TABLE command that runs on
the standby and requests a specific lock type other than AccessShareLock will be
rejected.

During recovery database changes are applied using full MVCC rules. In general this
means that queries will not experience lock conflicts with writes, just like normal
Postgres concurrency control (MVCC).

24.5.2. Handling query conflicts

There is some potential for conflict between standby queries and WAL redo from the
primary node. The user is provided with a number of optional ways to handle these
conflicts, though we must first understand the possible reasons behind a conflict.

• Access Exclusive Locks from primary node, including both explicit LOCK
commands and various kinds of DDL action

• Early cleanup of data still visible to the current query's snapshot

• Dropping tablespaces on the primary while standby queries are using those
tablespace for temporary work files (work_mem overflow)

• Dropping databases on the primary while that role is connected on standby.

• Waiting to acquire buffer cleanup locks (for which there is no time out)

Some WAL redo actions will be for DDL actions. These DDL actions are repeating
actions that have already committed on the primary node, so they must not fail on
the standby node. These DDL locks take priority and will automatically *cancel* any
read-only transactions that get in their way, after a grace period. This is similar to
the possibility of being canceled by the deadlock detector, but in this case the
standby process always wins, since the replayed actions must not fail. This also
ensures that replication doesn't fall behind while we wait for a query to complete.
Again, we assume that the standby is there for high availability purposes primarily.

An example of the above would be an Administrator on Primary server runs a DROP
TABLE command that refers to a table currently in use by a User query on the
standby server.

file:///home/sriggs/pg/pg_CVSHEAD/pgsql/doc/src/sgml/html/functions-admin.html#FUNCTIONS-RECOVERY-INFO-TABLE

Clearly the query cannot continue if we let the DROP TABLE proceed. If this
situation occurred on the primary, the DROP TABLE would wait until the query has
finished. When the query is on the standby and the DROP TABLE is on the primary,
the primary doesn't have information about what the standby is running and so
does not wait on the primary. The WAL change records come through to the
standby while the query is still running, causing a conflict.

The second reason for conflict between standby queries and WAL redo is "early
cleanup". Normally, PostgreSQL allows cleanup of old row versions when there are
no users who may need to see them to ensure correct visibility of data (known as
MVCC). If there is a standby query that has been running for longer than any query
on the primary then it is possible for old row versions to be removed by either
VACUUM or HOT. This will then generate WAL records that, if applied, would
remove data on the standby that might *potentially* be required by the standby
query. In more technical language, the Primary's xmin horizon is later than the
Standby's xmin horizon, allowing dead rows to be removed.

We have a number of choices for resolving query conflicts. The default is that we
wait and hope the query completes. If the recovery is not paused, then the server
will wait automatically until the server the lag between primary and standby is at
most max_standby_delay seconds. Once that grace period expires, we then take
one of the following actions:

• If the conflict is caused by a lock, we cancel the standby transaction
immediately, even if it is idle-in-transaction.

• If the conflict is caused by cleanup records we tell the standby query that a
conflict has occurred and that it must cancel itself to avoid the risk that it
attempts to silently fails to read relevant data because that data has been
removed. (This is very similar to the much feared error message "snapshot
too old").

Note also that this means that idle-in-transaction sessions are never canceled
except by locks. Users should be clear that tables that are regularly and
heavily updated on primary server will quickly cause cancellation of any
longer running queries made against those tables.

If cancellation does occur, the query and/or transaction can always be re-
executed. The error is dynamic and will not necessarily occur the same way if
the query is executed again.

Other remdial actions exist if the number of cancelations is unacceptable. The first
option is to connect to primary server and keep a query active for as long as we
need to run queries on the standby. This guarantees that a WAL cleanup record is
never generated and we don't ever get query conflicts as described above. This
could be done using contrib/dblink and pg_sleep(), or via other mechanisms.

A second option is to pause recovery using recovery control functions. These can
pause WAL apply completely and allows queries to proceed to completion. We can
issue pg_recovery_continue() at any time, so the pause can be held for long or
short periods, as the administrator allows. This method of conflict resolution may
mean that there is a build up of WAL records waiting to be applied and this will
progressively increase the failover delay. If there is regular arrival of WAL records
this would quickly prevent the use of the standby as a high availability failover

target. Some users may wish to use multiple standby servers for various purposes.
Pauses in recovery stay until explicitly released, so that pauses override the setting
of max_standby_delay.

Note that max_standby_delay is set in recovery.conf. It applies to the server as a
whole, so once used it may not be available for other users. They will have to wait
for the server to catch up again before the grace period is available again. So
max_standby_delay is a configuration parameter set by the administrator which
controls the maximum acceptable failover delay and is not a user-settable
parameter to specify how long their query needs to run in.

Waits for buffer cleanup locks do not currently result in query cancelation. Long
waits are uncommon, though can happen in some cases with long running nested
loop joins.

Dropping tablespaces or databases is discussed in the administrator's section since
they are not typical user situations.

24.5.3. Administrator's Overview

If there is a recovery.conf file present then the will start in Hot Standby mode by
default, though this can be disabled by setting "recovery_connections = off" in
recovery.conf. The server may take some time to enable recovery connections since
the server must first complete sufficient recovery to provide a consistent state
against which queries can run before enabling read only connections. Look for these
messages in the server logs

LOG: consistent recovery state reached
LOG: database system is ready to accept read only connections

If you are running file-based log shipping ("warm standby"), you may need to wait
until the next WAL file arrives, which could be as long as the archive_timeout
setting on the primary. This is because consistency information is recorded once
per checkpoint on the primary. The consistent state can also be delayed in the
presence of both transactions that contain large numbers of subtransactions and
long-lived transactions.

The setting of max_connections on the standby should be equal to or greater than
the setting of max_connections on the primary. This is to ensure that standby has
sufficient resources to manage incoming transactions.

It is important that the administrator consider the appropriate setting of
"max_standby_delay", set in recovery,conf. The default is 60 seconds, though there
is no optimal setting and it should be set according to business priorities. For
example if the server is primarily tasked as a High Availability server, then you may
wish to lower max_standby_delay or even set it to zero. If the standby server is
tasked as an additional server for decision support queries then it may be
acceptable to set this to a value of many hours, e.g. max_standby_delay = 43200
(12 hours). It is also possible to set max_standby_delay to -1 which means "always
wait" if there are conflicts, which will be useful when performing an archive
recovery from a backup.

A set of functions allow superusers to control the flow of recovery are described in

Table 9-58. These functions allow you to pause and continue recovery, as well as
dynamically set new recovery targets wile recovery progresses. Note that when a
server is paused the apparent delay between primary and standby will continue to
increase.

Transaction status "hint bits" written on primary are not WAL-logged, so data on
standby will likely re-write the hints again on the standby. Thus the main database
blocks will produce write I/Os even though all users are read-only; no changes have
occurred to the data values themselves. Users will be able to write large sort temp
files and re-generate relcache info files, so there is no part of the database that is
truly read-only during hot standby mode. There is no restriction on use of set
returning functions, or other users of tuplestore/tuplesort code. Note also that
writes to remote databases will still be possible, even though the transaction is
read-only locally.

Failover can be initiated at any time by allowing the startup process to reach the
end of WAL, or by issuing the function pg_recovery_stop() as superuser.

The following types of administrator command will not be accepted during recovery
mode

• Data Definition Language (DDL) - e.g. CREATE INDEX

• Privilege and Ownership - GRANT, REVOKE, REASSIGN

• Maintenance commands - ANALYZE, VACUUM, CLUSTER, REINDEX

Note again that some of these commands are actually allowed during "read only"
mode transactions on the primary.

As a result, you cannot create additional indexes that exist solely on the standby,
nor can statistics that exist solely on the standby.

pg_cancel_backend() will work on user backends, but not the Startup process,
which performs recovery. pg_locks will show locks held by backends as normal.
pg_locks also shows a virtual transaction managed by the Startup process that
owns all AccessExclusiveLocks held by transactions being replayed by recovery.
pg_stat_activity does not show an entry for the Startup process, nor do recovering
transactions show as active.

check_pgsql will work, but it is very simple. check_postgres will also work, though
many some actions could give different or confusing results. e.g. last vacuum time
will not be maintained for example, since no vacuum occurs on the standby (though
vacuums running on the primary do send their changes to the standby).

WAL file control commands will not work during recovery e.g. pg_start_backup(),
pg_switch_xlog() etc..

Dynamically loadable modules work, including the pg_stat_statements.

Advisory locks work normally in recovery, including deadlock detection. Note that
advisory locks are never WAL logged, so it is not possible for an advisory lock on
either the primary or the standby to conflict with WAL replay. Nor is it possible to
acquire an advisory lock on the primary and have it initiate a similar advisory lock

file:///home/sriggs/pg/pg_CVSHEAD/pgsql/doc/src/sgml/html/functions-admin.html#FUNCTIONS-RECOVERY-CONTROL-TABLE

on the standby. Advisory locks relate only to a single server on which they are
acquired.

Trigger-based replication systems (Slony, Londiste, Bucardo etc) won't run on the
standby at all, though they will run happily on the primary server. WAL replay is not
trigger-based so you cannot relay from the standby to any system that requires
additional database writes or relies on the use of triggers.

New oids cannot be assigned, though some UUID generators may still work as long
as they do not rely on writing new status to the database.

Currently, creating temp tables is not allowed during read only transactions, so in
some cases existing scripts will not run correctly. It is possible we may relax that
restriction in a later release. This is both a SQL Standard compliance issue and a
technical issue, so will not be resolved in this release.

DROP TABLESPACE can only succeed if the tablespace is empty. Some standby
users may be actively using the tablespace via their temp_tablespaces parameter.
If there are temp files in the tablespace we currently cancel all active queries to
ensure that temp files are removed, so that we can remove the tablespace and
continue with WAL replay.

Running DROP DATABASE, ALTER DATABASE SET TABLESPACE, or ALTER
DATABASE RENAME on primary will cause all users connected to that database on
the standby to be forcibly disconnected, once max_standby_delay has been
reached.

In normal running, if you issue DROP USER or DROP ROLE for a role with login
capability while that user is still connected then nothing happens to the connected
user - they remain connected. The user cannot reconnect however. This behaviour
applies in recovery also, so a DROP USER on the primary does not disconnect that
user on the standby.

Stats collector is active during recovery. All scans, reads, blocks, index usage etc
will all be recorded normally on the standby. Replayed actions will not duplicate
their effects on primary, so replaying an insert will not increment the Inserts
column of pg_stat_user_tables. The stats file is deleted at start of recovery, so
stats from primary and standby will differ; this is considered a feature not a bug.

Autovacuum is not active during recovery, though will start normally at the end of
recovery.

Background writer is active during recovery and will perform restartpoints (similar
to checkpoints on primary) and normal block cleaning activities. The CHECKPOINT
command is accepted during recovery, though performs a restartpoint rather than a
new checkpoint.

24.5.4. Hot Standby Parameter Reference

The following additional parameters are supported/provided within the
recovery.conf.

recovery_connections (boolean)

Specifies whether you would like to connect during recovery, or not. The
default is on, though you may wish to disable it to avoid software problems,
should they occur. Parameter can only be changed be stopping and restarting
the server.

recovery_starts_paused (boolean)

Allows the Administrator to start recovery in paused mode. The default is to
start recovery so that it will continue processing all available records.

max_standby_delay (string)

This parameter allows the Administrator to set a wait policy for queries that
conflict with incoming data changes. Valid settings are -1, meaning wait
forever, or a wait time of 0 or more seconds. If a conflict should occur the
server will delay up to this amount before it begins trying to resolve things less
amicably, described in Section 24.5.2. The max_standby_delay may be set at
server start or it may be dynamically adjusted using
pg_recovery_max_standby_delay described in Table 9-58. start

24.5.5. Caveats

At this writing, there are several limitations of Hot Standby. These can and
probably will be fixed in future releases:

• Operations on hash indexes are not presently WAL-logged, so replay will not
update these indexes. Hash indexes will not be available for use when running
queries during recovery.

Prev Home Next

Warm Standby Servers for
High Availability

Up Migration Between
Releases

file:///home/sriggs/pg/pg_CVSHEAD/pgsql/doc/src/sgml/html/backup.html
file:///home/sriggs/pg/pg_CVSHEAD/pgsql/doc/src/sgml/html/migration.html
file:///home/sriggs/pg/pg_CVSHEAD/pgsql/doc/src/sgml/html/index.html
file:///home/sriggs/pg/pg_CVSHEAD/pgsql/doc/src/sgml/html/warm-standby.html
file:///home/sriggs/pg/pg_CVSHEAD/pgsql/doc/src/sgml/html/functions-admin.html#FUNCTIONS-RECOVERY-CONTROL-TABLE
file:///home/sriggs/pg/pg_CVSHEAD/pgsql/doc/src/sgml/html/hot-standby.html#HOT-STANDBY-CONFLICT

	24.5. Hot Standby
	24.5.1. User's Overview
	24.5.2. Handling query conflicts
	24.5.3. Administrator's Overview
	24.5.4. Hot Standby Parameter Reference
	24.5.5. Caveats

